Senescent cells drive tissue dysfunction through the senescence-associated secretory phenotype (SASP). We uncovered a central role for mitochondria in the epigenetic regulation of the SASP, where mitochondrial-derived metabolites, specifically citrate and acetyl-CoA, fuel histone acetylation at SASP gene loci, promoting their expression. We identified the mitochondrial citrate carrier (SLC25A1) and ATP-citrate lyase (ACLY) as critical for this process.
View Article and Find Full Text PDFThe accumulation of senescent cells in the tumor microenvironment can drive tumorigenesis in a paracrine manner through the senescence-associated secretory phenotype (SASP). Using a new p16-FDR mouse line, we show that macrophages and endothelial cells are the predominant senescent cell types in murine KRAS-driven lung tumors. Through single cell transcriptomics, we identify a population of tumor-associated macrophages that express a unique array of pro-tumorigenic SASP factors and surface proteins and are also present in normal aged lungs.
View Article and Find Full Text PDFCytoplasmic recognition of microbial lipopolysaccharides (LPS) in human cells is elicited by the caspase-4 and caspase-5 noncanonical inflammasomes, which induce a form of inflammatory cell death termed pyroptosis. Here we show that LPS-mediated activation of caspase-4 also induces a stress response promoting cellular senescence, which is dependent on the caspase-4 substrate gasdermin-D and the tumor suppressor p53. Furthermore, we found that the caspase-4 noncanonical inflammasome is induced and assembled in response to oncogenic RAS signaling during oncogene-induced senescence (OIS).
View Article and Find Full Text PDFCellular senescence is characterized by an irreversible cell cycle arrest as well as a pro-inflammatory phenotype, thought to contribute to aging and age-related diseases. Neutrophils have essential roles in inflammatory responses; however, in certain contexts their abundance is associated with a number of age-related diseases, including liver disease. The relationship between neutrophils and cellular senescence is not well understood.
View Article and Find Full Text PDFCellular senescence is a stress response that elicits a permanent cell cycle arrest and triggers profound phenotypic changes such as the production of a bioactive secretome, referred to as the senescence-associated secretory phenotype (SASP). Acute senescence induction protects against cancer and limits fibrosis, but lingering senescent cells drive age-related disorders. Thus, targeting senescent cells to delay aging and limit dysfunction, known as "senotherapy," is gaining momentum.
View Article and Find Full Text PDFObjectives: To examine the feasibility and acceptability of NIDUS-Family, a 6-8 session manualised, individually tailored, modular intervention supporting independence at home for people with dementia; and explore participants' and facilitators' experiences of the intervention.
Method: In this single group multi-site feasibility study, trained, supervised non-clinically qualified graduates (facilitators) delivered NIDUS-Family to family carer and people living with dementia dyads. We recruited participants from GP practices and memory services in London and Bradford.
The mammalian liver possesses a unique capacity for regeneration. However, this regenerative potential declines with age due to unknown mechanisms. In this issue of , Ritschka and colleagues (pp.
View Article and Find Full Text PDFSenescence is a cellular stress response that results in the stable arrest of old, damaged or preneoplastic cells. Oncogene-induced senescence is tumor suppressive but can also exacerbate tumorigenesis through the secretion of pro-inflammatory factors from senescent cells. Drugs that selectively kill senescent cells, termed senolytics, have proved beneficial in animal models of many age-associated diseases.
View Article and Find Full Text PDFCellular senescence has been shown to contribute to skin ageing. However, the role of melanocytes in the process is understudied. Our data show that melanocytes are the only epidermal cell type to express the senescence marker p16 during human skin ageing.
View Article and Find Full Text PDFCellular senescence is a stress response program characterized by a robust cell cycle arrest and the induction of a proinflammatory senescence-associated secretory phenotype (SASP) that is triggered through an unknown mechanism. Here, we show that, during oncogene-induced senescence (OIS), the Toll-like receptor 2 (TLR2) and its partner TLR10 are key mediators of senescence in vitro and in murine models. TLR2 promotes cell cycle arrest by regulating the tumor suppressors p53-p21, p16, and p15 and regulates the SASP through the induction of the acute-phase serum amyloids A1 and A2 (A-SAAs) that, in turn, function as the damage-associated molecular patterns (DAMPs) signaling through TLR2 in OIS.
View Article and Find Full Text PDFAgeing is the biggest risk factor for cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening, has been implicated in age-related tissue dysfunction. Here, we address the question of how senescence is induced in rarely dividing/post-mitotic cardiomyocytes and investigate whether clearance of senescent cells attenuates age-related cardiac dysfunction.
View Article and Find Full Text PDFIncreased activation of the major pro-inflammatory NF-κB pathway leads to numerous age-related diseases, including chronic liver disease (CLD). Rapamycin, an inhibitor of mTOR, extends lifespan and healthspan, potentially via suppression of inflammaging, a process which is partially dependent on NF-κB signalling. However, it is unknown if rapamycin has beneficial effects in the context of compromised NF-κB signalling, such as that which occurs in several age-related chronic diseases.
View Article and Find Full Text PDFBackground: Lung transplantation is a well-established treatment for end-stage non-cystic fibrosis bronchiectasis (BR), though information regarding outcomes of transplantation remains limited. Our results of lung transplantation for Br are reported here.
Methods: A retrospective review of case notes and transplantation databases was conducted for patients that had underwent lung transplantation for bronchiectasis at the Freeman Hospital between 1990 and 2013.
Cellular senescence, the irreversible loss of replicative capacity in somatic cells, plays a causal role in the development of age-related pathology and in a number of age-related chronic inflammatory diseases. The ageing lung is marked by an increasing number of senescent cells, and evidence is mounting that senescence may directly contribute to a number of age-related respiratory diseases, including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Telomere dysfunction and alterations in mitochondrial homeostasis frequently occur in cellular senescence and are important to the development of the often detrimental senescence-associated secretory phenotype (SASP).
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown.
View Article and Find Full Text PDFCell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro-inflammatory and pro-oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2015
Cellular senescence has been associated with the structural and functional decline observed during physiological lung aging and in chronic obstructive pulmonary disease (COPD). Airway epithelial cells are the first line of defense in the lungs and are important to COPD pathogenesis. However, the mechanisms underlying airway epithelial cell senescence, and particularly the role of telomere dysfunction in this process, are poorly understood.
View Article and Find Full Text PDF