Publications by authors named "Jodi Switzer Blum"

Citrobacter sp. strain TSA-1 is an enteric bacterium isolated from the hindgut of the termite. Strain TSA-1 displays anaerobic growth with selenite, fumarate, tetrathionate, nitrate, or arsenate serving as electron acceptors, and it also grows aerobically.

View Article and Find Full Text PDF

A haloalkaliphilic sulfate-respiring bacterium, strain SLSR-1, was isolated from a lactate-fed stable enrichment culture originally obtained from the extreme environment of Searles Lake, California. The isolate proved capable of growth via sulfate-reduction over a broad range of salinities (125-330 g/L), although growth was slowest at salt-saturation. Strain SLSR-1 was also capable of growth via dissimilatory arsenate-reduction and displayed an even broader range of salinity tolerance (50-330 g/L) when grown under these conditions.

View Article and Find Full Text PDF

Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth.

View Article and Find Full Text PDF

Searles Lake occupies a closed basin harboring salt-saturated, alkaline brines that have exceptionally high concentrations of arsenic oxyanions. Strain SLAS-1(T) was previously isolated from Searles Lake (R. S.

View Article and Find Full Text PDF

A facultative chemoautotrophic bacterium, strain MLHE-1(T), was isolated from Mono Lake, an alkaline hypersaline soda lake in California, USA. Cells of strain MLHE-1(T) were Gram-negative, short motile rods that grew with inorganic electron donors (arsenite, hydrogen, sulfide or thiosulfate) coupled with the reduction of nitrate to nitrite. No aerobic growth was attained with arsenite or sulfide, but hydrogen sustained both aerobic and anaerobic growth.

View Article and Find Full Text PDF

Searles Lake is a salt-saturated, alkaline brine unusually rich in the toxic element arsenic. Arsenic speciation changed from arsenate [As(V)] to arsenite [As(III)] with sediment depth. Incubated anoxic sediment slurries displayed dissimilatory As(V)-reductase activity that was markedly stimulated by H2 or sulfide, whereas aerobic slurries had rapid As(III)-oxidase activity.

View Article and Find Full Text PDF

Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, approximately 300 nm) of Se(0) having monoclinic crystalline structures.

View Article and Find Full Text PDF

Abstract Bovine rumen fluid and slurried hamster feces completely reduced millimolar levels of arsenate to arsenite upon incubation under anoxic conditions. This activity was strongly inhibited by autoclaving or aerobic conditions, and partially inhibited by tungstate or chloramphenicol. The rate of arsenate reduction was faster in feces from a population of arsenate-watered (100 ppm) hamsters compared to a control group watered without arsenate.

View Article and Find Full Text PDF