Publications by authors named "Jodi McBride"

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD.

View Article and Find Full Text PDF

Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD.

View Article and Find Full Text PDF

Huntington disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (CAG) trinucleotide expansion in the huntingtin () gene that encodes the mutant huntingtin protein (mHTT). Visualization and quantification of cerebral mHTT will provide a proxy for target engagement and a means to evaluate therapeutic interventions aimed at lowering mHTT in the brain. Here, we validated the novel radioligand C-labeled 6-(5-((5-methoxypyridin-2-yl)methoxy)benzo[d]oxazol-2-yl)-2-methylpyridazin-3(2H)-one (C-CHDI-180R) using PET imaging to quantify cerebral mHTT aggregates in a macaque model of HD.

View Article and Find Full Text PDF
Article Synopsis
  • Alcohol Use Disorder (AUD) leads to significant personal, social, and economic impacts globally, with many patients experiencing cycles of relapse despite treatment.
  • Researchers conducted a study on rhesus monkeys to explore whether infusing a growth factor called GDNF into the brain could prevent relapse after periods of abstinence.
  • The results showed that GDNF not only reduced alcohol use over a year but also improved dopamine signaling in the brain, indicating that gene therapy might be a viable approach for preventing relapse in AUD.
View Article and Find Full Text PDF

We recently generated a nonhuman primate (NHP) model of the neurodegenerative disorder Huntington's disease (HD) using adeno-associated viral vectors to express a fragment of mutant HTT protein (mHTT) throughout the cortico-basal ganglia circuit. Previous work by our group established that mHTT-treated NHPs exhibit progressive motor and cognitive phenotypes which are accompanied by mild volumetric reductions of cortical-basal ganglia structures and reduced fractional anisotropy (FA) in the white matter fiber pathways interconnecting these regions, mirroring findings observed in early-stage HD patients. Given the mild structural atrophy observed in cortical and sub-cortical gray matter regions characterized in this model using tensor-based morphometry, the current study sought to query potential microstructural alterations in the same gray matter regions using diffusion tensor imaging (DTI), to define early biomarkers of neurodegenerative processes in this model.

View Article and Find Full Text PDF

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of in these cells, and their importance in CNS circuitry have not been delineated. Here we employed serial fluorescence activated nuclear sorting (sFANS), deep molecular profiling, and single nucleus RNA sequencing (snRNAseq) to demonstrate that layer 5a pyramidal neurons are vulnerable in primary motor cortex and other cortical areas of HD donors. Extensive -CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layer 6a, layer 6b neurons that are resilient in HD.

View Article and Find Full Text PDF

Background: Dopamine system dysfunction and altered glucose metabolism are implicated in Huntington's disease (HD), a neurological disease caused by mutant huntingtin (mHTT) expression.

Objective: The aim was to characterize alterations in cerebral dopamine D /D receptor density and glucose utilization in a newly developed AAV-mediated NHP model of HD that expresses mHTT throughout numerous brain regions.

Methods: Positron emission tomography (PET) imaging was performed using [ F]fallypride to quantify D /D receptor density and 2-[ F]fluoro-2-deoxy-d-glucose ([ F]FDG) to measure cerebral glucose utilization in these HD macaques.

View Article and Find Full Text PDF

The identification of molecular biomarkers in CSF from individuals affected by Huntington disease may help improve predictions of disease onset, better define disease progression and could facilitate the evaluation of potential therapies. The primary objective of our study was to investigate novel CSF protein candidates and replicate previously reported protein biomarker changes in CSF from Huntington disease mutation carriers and healthy controls. Our secondary objective was to compare the discriminatory potential of individual protein analytes and combinations of CSF protein markers for stratifying individuals based on the severity of Huntington disease.

View Article and Find Full Text PDF

We created a new nonhuman primate model of the genetic neurodegenerative disorder Huntington's disease (HD) by injecting a mixture of recombinant adeno-associated viral vectors, serotypes AAV2 and AAV2.retro, each expressing a fragment of human mutant () into the caudate and putamen of adult rhesus macaques. This modeling strategy results in expression of mutant huntingtin protein (mHTT) and aggregate formation in the injected brain regions, as well as dozens of other cortical and subcortical brain regions affected in human HD patients.

View Article and Find Full Text PDF

The development of high efficiency, central nervous system (CNS) targeting AAV-based gene therapies is necessary to address challenges in both pre-clinical and clinical investigations. The engineered capsids, AAV.PHP.

View Article and Find Full Text PDF

Macaques are the most common nonhuman primate (NHP) species used in neuroscience research. With the advancement of many neuroimaging techniques, new studies are beginning to apply multiple types of in vivo magnetic resonance imaging (MRI), such as structural imaging (sMRI) with T1 and T2 weighted contrasts alongside diffusion weighed (DW) imaging. In studies involving rhesus macaques, this approach can be used to better understand micro-structural changes that occur during development, in various disease states or with normative aging.

View Article and Find Full Text PDF

Genetically modified rodent models of Huntington's disease (HD) have been especially valuable to our understanding of HD pathology and the mechanisms by which the mutant HTT gene alters physiology. However, due to inherent differences in genetics, neuroanatomy, neurocircuitry and neurophysiology, animal models do not always faithfully or fully recapitulate human disease features or adequately predict a clinical response to treatment. Therefore, conducting translational studies of candidate HD therapeutics only in a single species (i.

View Article and Find Full Text PDF

Recently, AAV2.retro, a new capsid variant capable of efficient retrograde transport in brain, was generated in mice using a directed evolution approach. However, it remains unclear to what degree transport will be recapitulated in the substantially larger and more complex nonhuman primate (NHP) brain.

View Article and Find Full Text PDF

The ability of recombinant adeno-associated virus (AAV) to deliver transgenes to the CNS has allowed for several advancements in the field of gene therapy to treat brain disorders. Although most AAVs do not readily cross the blood-brain barrier and transduce the CNS following peripheral administration, AAV-PHP.B has recently been shown to transduce brains of mice with higher efficiency compared with its parent serotype, AAV9, following injection into the retro-orbital sinus.

View Article and Find Full Text PDF

Huntington's disease (HD) is a fatal genetic neurological disorder caused by a mutation in the human Huntingtin (HTT) gene. This mutation confers a toxic gain of function of the encoded mutant huntingtin (mHTT) protein, leading to widespread neuropathology including the formation of mHTT-positive inclusion bodies, gene dysregulation, reduced levels of adult dentate gyrus neurogenesis and neuron loss throughout many regions of the brain. Additionally, because HTT is ubiquitously expressed, several peripheral tissues are also affected.

View Article and Find Full Text PDF

We have identified a natural Japanese macaque model of the childhood neurodegenerative disorder neuronal ceroid lipofuscinosis, commonly known as Batten Disease, caused by a homozygous frameshift mutation in the CLN7 gene (CLN7). Affected macaques display progressive neurological deficits including visual impairment, tremor, incoordination, ataxia and impaired balance. Imaging, functional and pathological studies revealed that CLN7 macaques have reduced retinal thickness and retinal function early in disease, followed by profound cerebral and cerebellar atrophy that progresses over a five to six-year disease course.

View Article and Find Full Text PDF

Huntington's disease (HD) is a genetic neurological disorder that causes severe and progressive motor, cognitive, psychiatric, and metabolic symptoms. There is a robust, significant elevation in circulating levels of the stress hormone, cortisol, in HD patients; however, the causes and consequences of this elevation are largely uncharacterized. Here, we evaluated whether elevated levels of corticosterone, the rodent homolog of cortisol, contributed to the development of symptomology in transgenic HD mice.

View Article and Find Full Text PDF

Stereotaxic surgery is an invaluable tool to deliver a variety of gene therapy constructs to the nonhuman primate caudate and putamen in preclinical studies for the genetic, neurodegenerative disorder, Huntington's disease (HD). Here we describe in detail how to perform this technique beginning with a pre-surgical magnetic resonance imaging scan to determine surgical coordinates followed by the stereotaxic surgical injection technique. In addition, we include methodology of a full necropsy including brain and peripheral tissue removal and a standard immunohistochemical technique to visualize the injected gene therapy agent.

View Article and Find Full Text PDF

RNA-targeting approaches are emerging as viable therapeutics that offer an alternative method to modulate traditionally 'undrugable' targets. In the case of dominantly inherited neurodegenerative diseases, gene suppression strategies can target the underlying cause of these intractable disorders. Polyglutamine diseases are caused by CAG expansions in discrete genes, making them ideal candidates for gene suppression therapies.

View Article and Find Full Text PDF

Viral vector delivery of RNA silencing constructs, when administered into vasculature, typically results in poor central nervous system (CNS) transduction due to the inability of the vector to cross the blood-brain barrier (BBB). However, adeno-associated virus serotype 9 (AAV9) has the ability to cross the BBB and robustly transduce brain parenchyma and peripheral tissues at biologically meaningful levels when injected intravenously. Recent work by our lab has shown that this method can be used to deliver RNA silencing constructs, resulting in significant reductions in gene expression in multiple brain regions and in peripheral tissues.

View Article and Find Full Text PDF

Huntington׳s disease (HD) is a neurodegenerative disorder caused by a mutation in the HTT gene (mHTT) encoding the protein huntingtin. An expansion in the gene׳s CAG repeat length renders a misfolded, dysfunctional protein with an abnormally long glutamine (Q) stretch at the N terminus that often incorporates into inclusion bodies and leads to neurodegeneration in many regions of the brain. HD is characterized by motor and cognitive decline as well as mood disorders, with depression being particularly common.

View Article and Find Full Text PDF

Huntington's disease is a fatal neurodegenerative disease caused by polyglutamine-expansion in huntingtin (HTT). Recent work showed that gene silencing approaches, including RNA interference (RNAi), improve disease readouts in mice. To advance RNAi to the clinic, we designed miHDS1, with robust knockdown of human HTT and minimized silencing of unintended transcripts.

View Article and Find Full Text PDF

Huntington's disease (HD) is a fatal neurological disorder caused by a CAG repeat expansion in the HTT gene, which encodes a mutant huntingtin protein (mHTT). The mutation confers a toxic gain of function on huntingtin, leading to widespread neurodegeneration and inclusion formation in many brain regions. Although the hallmark symptom of HD is hyperkinesia stemming from striatal degeneration, several other brain regions are affected which cause psychiatric, cognitive, and metabolic symptoms.

View Article and Find Full Text PDF

To date, a therapy for Huntington's disease (HD), a genetic, neurodegenerative disorder, remains elusive. HD is characterized by cell loss in the basal ganglia, with particular damage to the putamen, an area of the brain responsible for initiating and refining motor movements. Consequently, patients exhibit a hyperkinetic movement disorder.

View Article and Find Full Text PDF

The purpose of this study was to investigate the link between mutant huntingtin (Htt) and neuronal damage in relation to mitochondria in Huntington's disease (HD). In an earlier study, we determined the relationship between mutant Htt and mitochondrial dynamics/synaptic viability in HD patients. We found mitochondrial loss, abnormal mitochondrial dynamics and mutant Htt association with mitochondria in HD patients.

View Article and Find Full Text PDF