To overcome nitrogen deficiencies in the soil, legumes enter symbioses with rhizobial bacteria that convert atmospheric nitrogen into ammonium. Rhizobia are accommodated as endosymbionts within lateral root organs called nodules that initiate from the inner layers of Medicago truncatula roots in response to rhizobial perception. In contrast, lateral roots emerge from predefined founder cells as an adaptive response to environmental stimuli, including water and nutrient availability.
View Article and Find Full Text PDFMost legume plants can form nodules, specialized lateral organs that form on roots, and house nitrogen-fixing bacteria collectively called rhizobia. The uptake of the phytohormone auxin into cells is known to be crucial for development of lateral roots. To test the role of auxin influx in nodulation we used the auxin influx inhibitors 1-naphthoxyacetic acid (1-NOA) and 2-NOA, which we found reduced nodulation of This suggested the possible involvement of the AUX/LAX family of auxin influx transporters in nodulation.
View Article and Find Full Text PDFThe local environment has a substantial impact on early seedling development. Applying excess carbon in the form of sucrose is known to alter both the timing and duration of seedling growth. Here, we show that sucrose changes growth patterns by increasing auxin levels and rootward auxin transport in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDF