Publications by authors named "Jodi L Connell"

In their native environments, adherent cells encounter dynamic topographical cues involved in promoting differentiation, orientation, and migration. Ideally, such processes would be amenable to study in cell culture using tools capable of imposing dynamic, arbitrary, and reversible topographic features without perturbing environmental conditions or causing chemical and/or structural disruptions to the substrate surface. To address this need, we report here development of an in vitro strategy for challenging cells with dynamic topographical experiences in which protein-based hydrogel substrate surfaces are modified in real time by positioning a pulsed, near-infrared laser focus within the hydrogel, promoting chemical cross-linking which results in local contraction of the protein matrix.

View Article and Find Full Text PDF

Advances in microscopic three-dimensional (μ3D) printing provide a means to microfabricate an almost limitless range of arbitrary geometries, offering new opportunities to rapidly prototype complex architectures for microfluidic and cellular applications. Such 3D lithographic capabilities present a tantalizing prospect for engineering micromechanical components, for example, pumps and valves, for cellular environments composed of smart materials whose size, shape, permeability, stiffness, and other attributes might be modified in real time to precisely manipulate ultralow-volume samples. Unfortunately, most materials produced using μ3D printing are synthetic polymers that are inert to biologically tolerated chemical and light-based triggers and provide low compatibility as materials for cell culture and encapsulation applications.

View Article and Find Full Text PDF

Microbes frequently live in nature as small, densely packed aggregates containing ∼10(1)-10(5) cells. These aggregates not only display distinct phenotypes, including resistance to antibiotics, but also, serve as building blocks for larger biofilm communities. Aggregates within these larger communities display nonrandom spatial organization, and recent evidence indicates that this spatial organization is critical for fitness.

View Article and Find Full Text PDF

We report a novel strategy for studying a broad range of cellular behaviors in real time by combining two powerful analytical techniques, micro-3D printing and scanning electrochemical microscopy (SECM). This allows one, in microbiological studies, to isolate a known number of cells in a micrometer-sized chamber with a roof and walls that are permeable to small molecules and observe metabolic products. In such studies, the size and spatial organization of a population play a crucial role in cellular group behaviors, such as intercellular interactions and communication.

View Article and Find Full Text PDF

ABSTRACT Cells within biofilms exhibit physiological heterogeneity, in part because of chemical gradients existing within these spatially structured communities. Previous work has examined how chemical gradients develop in large biofilms containing >10(8) cells. However, many bacterial communities in nature are composed of small, densely packed aggregates of cells (≤ 10(5) bacteria).

View Article and Find Full Text PDF

Communities of microbes can live almost anywhere and contain many different species. Interactions between members of these communities often determine the state of the habitat in which they live. When these habitats include sites on the human body, these interactions can affect health and disease.

View Article and Find Full Text PDF

Bacteria communicate via short-range physical and chemical signals, interactions known to mediate quorum sensing, sporulation, and other adaptive phenotypes. Although most in vitro studies examine bacterial properties averaged over large populations, the levels of key molecular determinants of bacterial fitness and pathogenicity (e.g.

View Article and Find Full Text PDF

Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 10(8) bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells.

View Article and Find Full Text PDF

Indium-mediated allylation provides remarkable stereo- and regioselectivity, and it proceeds easily and in high yield in aqueous solutions. In spite of its widespread use, there have been few fundamental studies of this reaction. We have developed a photomicrographic technique for measuring rates of reaction of allyl halides at indium surfaces, and we describe the mathematical model for discriminating between diffusion and kinetic control.

View Article and Find Full Text PDF

Background: NSF (nephrogenic systemic fibrosis) is a potentially serious adverse effect for renal patients undergoing MRI (magnetic resonance imaging) procedures using gadolinium-containing contrast agents. There is therefore a need to verify clearance of these agents and to confirm appropriate renal status of patients treated with these drugs.

Methods: Serum samples from canine and feline subjects dosed with 0.

View Article and Find Full Text PDF