Publications by authors named "Jodi L Camberg"

The bacterial pathogen, Staphylococcus aureus, grows by dividing in two alternating orthogonal planes. How these cell division planes are positioned correctly is not known. Here we used chemical genetic screening to identify PcdA as a division plane placement factor.

View Article and Find Full Text PDF

Across living organisms, division is necessary for cell survival and passing heritable information to the next generation. For this reason, cell division is highly conserved among eukaryotes and prokaryotes. Among the most highly conserved cell division proteins in eukaryotes are tubulin and actin.

View Article and Find Full Text PDF

Unlabelled: Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic (UPEC) may enter a quiescent state that enables them to reemerge after the completion of successful antibiotic treatment. Many clinical isolates, including the well-characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state that is reversible with cues, including peptidoglycan-derived peptides and amino acids.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates a gene named PcdA, which plays a crucial role in determining how a spherical bacterium divides, highlighting its unique function as a cell division protein rather than its original role as a restriction enzyme subunit.
  • - PcdA interacts with FtsZ, a key component in the bacterial divisome, and helps correctly position cell division sites, similar to how a related protein stabilizes microtubules in animals.
  • - Disrupting PcdA leads to improper cell division, increased antibiotic sensitivity, and reduced virulence, suggesting that targeting PcdA could offer new treatment options for antibiotic-resistant bacterial strains.
View Article and Find Full Text PDF

During cell division in , the highly conserved tubulin homolog FtsZ polymerizes and assembles into a ring-like structure, called the Z-ring, at the site of septation. For recruitment to the membrane surface, FtsZ polymers directly interact with membrane-associated proteins, predominantly FtsA in . FtsA shares structural homology with actin and, like actin, hydrolyzes ATP.

View Article and Find Full Text PDF

Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic (UPEC) may enter a quiescent state that enables them to reemerge after completion of successful antibiotic treatment. Many clinical isolates, including the well characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids.

View Article and Find Full Text PDF

The essential bacterial division protein in Escherichia coli, FtsZ, assembles into the FtsZ-ring at midcell and recruits other proteins to the division site to promote septation. A region of the FtsZ amino acid sequence that links the conserved polymerization domain to a C-terminal protein interaction site was predicted to be intrinsically disordered and has been implicated in modulating spacing and architectural arrangements of FtsZ filaments. While the majority of cell division proteins that directly bind to FtsZ engage either the polymerization domain or the C-terminal interaction site, ClpX, the recognition and unfolding component of the bacterial ClpXP proteasome, has a secondary interaction with the predicted intrinsically disordered region (IDR) of FtsZ when FtsZ is polymerized.

View Article and Find Full Text PDF

During Escherichia coli cell division, an intracellular complex of cell division proteins known as the Z-ring assembles at midcell during early division and serves as the site of constriction. While the predominant protein in the Z-ring is the widely conserved tubulin homolog FtsZ, the actin homolog FtsA tethers the Z-ring scaffold to the cytoplasmic membrane by binding to FtsZ. While FtsZ is known to function as a dynamic, polymerized GTPase, the assembly state of its partner, FtsA, and the role of ATP are still unclear.

View Article and Find Full Text PDF

It is well established that the antitoxins of toxin-antitoxin (TA) systems are selectively degraded by bacterial proteases in response to stress. However, how distinct stressors result in the selective degradation of specific antitoxins remain unanswered. MqsRA is a TA system activated by various stresses, including oxidation.

View Article and Find Full Text PDF

During pathogenic infections, bacterial cells experience environmental stress conditions, including low oxygen and thermal stress. Bacterial cells proliferate during infection and divide by a mechanism characterized by the assembly of a large cytoskeletal structure at the division site called the Z-ring. The major protein constituting the Z-ring is FtsZ, a tubulin homolog and GTPase that utilizes the nucleotide to assemble into dynamic polymers.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) promote immunosuppressive activities in the tumor microenvironment (TME), resulting in increased tumor burden and diminishing the anti-tumor response of immunotherapies. While primary and metastatic tumors are typically the focal points of therapeutic development, the immune cells of the TME are differentially programmed by the tissue of the metastatic site. In particular, MDSCs are programmed uniquely within different organs in the context of tumor progression.

View Article and Find Full Text PDF

MinD is a cell division ATPase in Escherichia coli that oscillates from pole to pole and regulates the spatial position of the cell division machinery. Together with MinC and MinE, the Min system restricts assembly of the FtsZ-ring to midcell, oscillating between the opposite ends of the cell and preventing FtsZ-ring misassembly at the poles. Here, we show that the ATP-dependent bacterial proteasome complex ClpXP degrades MinD in reconstituted degradation reactions in vitro and in vivo through direct recognition of the MinD N-terminal region.

View Article and Find Full Text PDF

Uropathogenic (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate with glucose as the carbon source.

View Article and Find Full Text PDF

Spiny dogfish () and smoothhound () sharks in the northwest Atlantic undergo seasonal migrations driven by changes in water temperature. However, the recognized thermal habitats of these regional populations are poorly described. Here, we report the thermal range, catch frequency with bottom temperature, and catch frequency with time of year for both shark species in Narragansett Bay, Rhode Island.

View Article and Find Full Text PDF

Fanconi anemia (FA) is an inherited disease characterized by bone marrow failure and increased cancer risk. FA is caused by mutation of any 1 of 22 genes, and the FA proteins function cooperatively to repair DNA interstrand cross-links (ICLs). A central step in the activation of the FA pathway is the monoubiquitination of the FANCD2 and FANCI proteins, which occurs within chromatin.

View Article and Find Full Text PDF

Most clinically available antipsychotic drugs (APDs) bind dopamine D2 receptors (D2R) at therapeutic concentrations, and it is thought that they suppress psychotic symptoms by serving as competitive antagonists of dopamine at D2R. Here, we present data that demonstrate that APDs act independently of dopamine at an intracellular pool of D2R to enhance transport of D2R to the cell surface and suggest that APDs can act as pharmacological chaperones at D2R. Among the first- and second-generation APDs that we tested, clozapine exhibited the lowest efficacy for translocating D2R to the cell surface.

View Article and Find Full Text PDF

The Min system in , consisting of MinC, MinD, and MinE proteins, regulates division site selection by preventing assembly of the FtsZ-ring (Z-ring) and exhibits polar oscillation MinC antagonizes FtsZ polymerization, and , the cellular location of MinC is controlled by a direct association with MinD at the membrane. To further understand the interactions of MinC with FtsZ and MinD, we performed a mutagenesis screen to identify substitutions in that are associated with defects in cell division. We identified amino acids in both the N- and C-domains of MinC that are important for direct interactions with FtsZ and MinD , as well as mutations that modify the observed oscillation of green fluorescent protein (GFP)-MinC.

View Article and Find Full Text PDF

Binary fission has been well studied in rod-shaped bacteria, but the mechanisms underlying cell division in spherical bacteria are poorly understood. Rod-shaped bacteria harbor regulatory proteins that place and remodel the division machinery during cytokinesis. In the spherical human pathogen , we found that the essential protein GpsB localizes to mid-cell during cell division and co-constricts with the division machinery.

View Article and Find Full Text PDF

Cell division in prokaryotes initiates with assembly of the Z-ring at midcell, which, in Escherichia coli, is tethered to the inner leaflet of the cytoplasmic membrane through a direct interaction with FtsA, a widely conserved actin homolog. The Z-ring is comprised of polymers of tubulin-like FtsZ and has been suggested to provide the force for constriction. Here, we demonstrate that FtsA exerts force on membranes causing redistribution of membrane architecture, robustly hydrolyzes ATP and directly engages FtsZ polymers in a reconstituted system.

View Article and Find Full Text PDF

ClpX is a member of the Clp/Hsp100 family of ATP-dependent chaperones and partners with ClpP, a compartmentalized protease, to degrade protein substrates bearing specific recognition signals. ClpX targets specific proteins for degradation directly or with substrate-specific adaptor proteins. Native substrates of ClpXP include proteins that form large oligomeric assemblies, such as MuA, FtsZ, and Dps in .

View Article and Find Full Text PDF

During bacterial cell division a dynamic protein structure called the Z-ring assembles at the septum. The major protein in the Z-ring in Escherichia coli is FtsZ, a tubulin homolog that polymerizes with GTP. FtsZ is degraded by the two-component ATP-dependent protease ClpXP.

View Article and Find Full Text PDF

In the present study, it is shown that although Escherichia coli CFT073, a human uropathogenic (UPEC) strain, grows in liquid glucose M9 minimal medium, it fails to grow on glucose M9 minimal medium agar plates seeded with ≤10(6) CFU. The cells on glucose plates appear to be in a "quiescent" state that can be prevented by various combinations of lysine, methionine, and tyrosine. Moreover, the quiescent state is characteristic of ~80% of E.

View Article and Find Full Text PDF

The type II secretion system Eps in Vibrio cholerae promotes the extracellular transport of cholera toxin and several hydrolytic enzymes and is a major virulence system in many Gram-negative pathogens which is structurally related to the type IV pilus system. The cytoplasmic ATPase EpsE provides the energy for exoprotein secretion through ATP hydrolysis. EpsE contains a unique metal-binding domain that coordinates zinc through a tetracysteine motif (CXXCX CXXC), which is also present in type IV pilus assembly but not retraction ATPases.

View Article and Find Full Text PDF

The Min system of proteins, consisting of MinC, MinD and MinE, is essential for normal cell division in Escherichia coli. MinC forms a polar gradient to restrict placement of the division septum to midcell. MinC localization occurs through a direct interaction with MinD, a membrane-associating Par-like ATPase.

View Article and Find Full Text PDF

ClpXP is a two-component ATP-dependent protease that unfolds and degrades proteins bearing specific recognition signals. One substrate degraded by Escherichia coli ClpXP is FtsZ, an essential cell division protein. FtsZ forms polymers that assemble into a large ring-like structure, termed the Z-ring, during cell division at the site of constriction.

View Article and Find Full Text PDF