Publications by authors named "Jodi Bubenik"

Stroke is a major cause of disability for adults over 40 years of age. While research into animal models has prioritized treatments aimed at diminishing post-stroke damage, no studies have investigated the response to a severe stroke injury in a highly regenerative adult mammal. Here we investigate the effects of transient ischemia on adult spiny mice, Acomys cahirinus, due to their ability to regenerate multiple tissues without scarring.

View Article and Find Full Text PDF

Neurological and neuromuscular diseases resulting from familial, sporadic, or de novo mutations have devasting personal, familial, and societal impacts. As the initial product of DNA transcription, RNA transcripts and their associated ribonucleoprotein complexes provide attractive targets for modulation by increasing wild-type or blocking mutant allele expression, thus relieving downstream pathological consequences. Therefore, it is unsurprising that many existing and under-development therapeutics have focused on targeting disease-associated RNA transcripts as a frontline drug strategy for these genetic disorders.

View Article and Find Full Text PDF

The cardiovascular system is strongly impacted by the hazards of spaceflight. Astronauts spending steadily increasing lengths of time in microgravity are subject to cardiovascular deconditioning resulting in loss of vascular tone, reduced total blood volume, and diminished cardiac output. Appreciating the mechanisms by which the cells of the vasculature are altered during spaceflight will be integral to understanding and combating these deleterious effects as the human presence in space advances.

View Article and Find Full Text PDF

N-methyladenosine (mA) modifications play crucial roles in RNA metabolism. How mA regulates RNA polymerase II (RNA Pol II) transcription remains unclear. We find that 7SK small nuclear RNA (snRNA), a regulator of RNA Pol II promoter-proximal pausing, is highly mA-modified in non-small cell lung cancer (NSCLC) cells.

View Article and Find Full Text PDF

Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach.

View Article and Find Full Text PDF

Background: Genetic variations across the SARS-CoV-2 genome may influence transmissibility of the virus and the host's anti-viral immune response, in turn affecting the frequency of variants over time. In this study, we examined the adjacent amino acid polymorphisms in the nucleocapsid (R203K/G204R) of SARS-CoV-2 that arose on the background of the spike D614G change and describe how strains harboring these changes became dominant circulating strains globally.

Methods: Deep-sequencing data of SARS-CoV-2 from public databases and from clinical samples were analyzed to identify and map genetic variants and sub-genomic RNA transcripts across the genome.

View Article and Find Full Text PDF

Background: Genetic variations across the SARS-CoV-2 genome may influence transmissibility of the virus and the host’s anti-viral immune response, in turn affecting the frequency of variants over-time. In this study, we examined the adjacent amino acid polymorphisms in the nucleocapsid (R203K/G204R) of SARS-CoV-2 that arose on the background of the spike D614G change and describe how strains harboring these changes became dominant circulating strains globally.

Methods: Deep sequencing data of SARS-CoV-2 from public databases and from clinical samples were analyzed to identify and map genetic variants and sub-genomic RNA transcripts across the genome.

View Article and Find Full Text PDF

In vivo RNA structure analysis has become a powerful tool in molecular biology, largely due to the coupling of an increasingly diverse set of chemical approaches with high-throughput sequencing. This has resulted in a transition from single target to transcriptome-wide approaches. However, these methods require sequencing depths that preclude studying low abundance targets, which are not sufficiently captured in transcriptome-wide approaches.

View Article and Find Full Text PDF

Short tandem repeats (STRs) are prone to expansion mutations that cause multiple hereditary neurological and neuromuscular diseases. To study pathomechanisms using mouse models that recapitulate the tissue specificity and developmental timing of an STR expansion gene, we used rolling circle amplification and CRISPR/Cas9-mediated genome editing to generate CTG expansion (CTG) knockin models of myotonic dystrophy type 1 (DM1). We demonstrate that skeletal muscle myoblasts and brain choroid plexus epithelial cells are particularly susceptible to CTG mutations and RNA missplicing.

View Article and Find Full Text PDF

In this issue of Molecular Cell, Yap et al. (2018) identify a novel lncRNA (PNCTR) that contains short tandem repeats that trap the RNA splicing factor PTBP1 in the perinucleolar compartment and link this sequestration activity to cancer cell development.

View Article and Find Full Text PDF

Mechanisms that degrade inflammatory mRNAs are well known; however, stabilizing mechanisms are poorly understood. Here, we show that Act1, an interleukin-17 (IL-17)-receptor-complex adaptor, binds and stabilizes mRNAs encoding key inflammatory proteins. The Act1 SEFIR domain binds a stem-loop structure, the SEFIR-binding element (SBE), in the 3' untranslated region (UTR) of Cxcl1 mRNA, encoding an inflammatory chemokine.

View Article and Find Full Text PDF

Several microsatellite-expansion diseases are characterized by the accumulation of RNA foci and RAN proteins, raising the possibility of a mechanistic connection. We explored this question using myotonic dystrophy type 2, a multisystemic disease thought to be primarily caused by RNA gain-of-function effects. We demonstrate that the DM2 CCTG⋅CAGG expansion expresses sense and antisense tetrapeptide poly-(LPAC) and poly-(QAGR) RAN proteins, respectively.

View Article and Find Full Text PDF

Balanced processing of HIV-1 RNA is critical to virus replication and is regulated by host factors. In this report, we demonstrate that overexpression of either Tra2α or Tra2β results in a marked reduction in HIV-1 Gag/Env expression, an effect associated with changes in HIV-1 RNA accumulation, altered viral splice site usage, and a block to export of HIV-1 genomic RNA. A natural isoform of Tra2β (Tra2ß3), lacking the N-terminal RS domain, also suppressed HIV-1 expression but had different effects on viral RNA processing.

View Article and Find Full Text PDF

Selenium, a micronutrient, is primarily incorporated into human physiology as selenocysteine (Sec). The 25 Sec-containing proteins in humans are known as selenoproteins. Their synthesis depends on the translational recoding of the UGA stop codon to allow Sec insertion.

View Article and Find Full Text PDF

Selenoprotein S (SelS) is a 189 amino acid trans-membrane protein that plays an important yet undefined role in the unfolded protein response. It has been proposed that SelS may function as a reductase, with the penultimate selenocysteine (Sec(188)) residue participating in a selenosulfide bond with cysteine (Cys(174)). Cotranslational incorporation of Sec into SelS depends on the recoding of the UGA codon, which requires a Selenocysteine Insertion Sequence (SECIS) element in the 3'UTR of the transcript.

View Article and Find Full Text PDF

eIF4a3, a DEAD-box protein family member, is a component of the exon junction complex which assembles on spliced mRNAs. The protein also acts as a transcript-selective translational repressor of selenoprotein synthesis during selenium deficiency. Selenocysteine (Sec) incorporation into selenoproteins requires a Sec Insertion Sequence (SECIS) element in the 3' untranslated region.

View Article and Find Full Text PDF

The synthesis of selenoproteins requires the translational recoding of the UGA stop codon as selenocysteine. During selenium deficiency, there is a hierarchy of selenoprotein expression, with certain selenoproteins synthesized at the expense of others. The mechanism by which the limiting selenocysteine incorporation machinery is preferentially utilized to maintain the expression of essential selenoproteins has not been elucidated.

View Article and Find Full Text PDF

The human selenoproteome is composed of approximately 25 selenoproteins, which cotranslationally incorporate selenocysteine, the 21st amino acid. Selenoprotein expression requires an unusual translation mechanism, as selenocysteine is encoded by the UGA stop codon. SECIS-binding protein 2 (SBP2) is an essential component of the selenocysteine insertion machinery.

View Article and Find Full Text PDF

The expression of selenoproteins requires the translational recoding of the UGA stop codon to selenocysteine. In eukaryotes, this requires an RNA stem loop structure in the 3'-untranslated region, termed a selenocysteine insertion sequence (SECIS), and SECIS-binding protein 2 (SBP2). This study implicates SBP2 in dictating the hierarchy of selenoprotein expression, because it is the first to show that SBP2 distinguishes between SECIS elements in vitro.

View Article and Find Full Text PDF