Background: Busulfan is an alkylating agent used in allogeneic hematopoietic stem cell transplantation for various malignant and nonmalignant disorders. Therapeutic drug monitoring of busulfan is common because busulfan exposure has been linked to veno-occlusive disease, disease relapse, and failed engraftment. The authors developed an automated immunoassay, along with stable calibrators and controls, and quantified busulfan in sodium heparin plasma.
View Article and Find Full Text PDFBackground: The value of therapeutic drug monitoring (TDM) for paclitaxel (PTX) was recently demonstrated in the largest TDM trial ever conducted in oncology. The trial demonstrated significant reduction in neuropathy when using TDM. Dose adjustment for PTX was based on time above a threshold concentration (Tc>0.
View Article and Find Full Text PDFBackground: Gemcitabine (2',2'-difluoro-2'-deoxycytidine) is a nucleoside analog used as a single agent and in combination regimens for the treatment of a variety of solid tumors. Several studies have shown a relationship between gemcitabine peak plasma concentration (Cmax) and hematological toxicity. An immunoassay for gemcitabine in plasma was developed and validated to facilitate therapeutic drug monitoring (TDM) by providing an economical, robust method for automated chemistry analyzers.
View Article and Find Full Text PDFBackground: Imatinib pharmacokinetic variability and the relationship of trough concentrations with clinical outcomes have been extensively reported. Although physical methods to quantitate imatinib exist, they are not widely available for routine use. An automated homogenous immunoassay for imatinib has been developed, facilitating routine imatinib testing.
View Article and Find Full Text PDFBackground: Paclitaxel (PTX; Taxol, Abraxane) is used in many regimens for breast cancer, non-small cell lung cancer (NSCLC), and ovarian cancer. Multiple studies have demonstrated that PTX exhibits a greater than 10-fold interpatient variability of clearance rates when patients are dosed according to body surface area (BSA). Pharmacokinetic and pharmacodynamic relationships have been elucidated from BSA-based dosing.
View Article and Find Full Text PDFBackground: Docetaxel (Taxotere) (DTX) is a widely used chemotherapy agent used in many regimens for the treatment of solid tumors, for example breast cancer, non-small cell lung cancer, gastric, prostate, and head and neck cancers. This drug meets the criteria for therapeutic dose management, in that it is associated with high pharmacokinetic variability and dose-limiting toxicity; it has a narrow therapeutic window, and there is a significant pharmacokinetic-pharmacodynamic relationship. Measures of exposure and area under the time-concentration curve have been associated with both toxicity and outcomes, making therapeutic dose management for this drug an unmet clinical need.
View Article and Find Full Text PDFBackground: 5-Fluorouracil (5-FU) is the most widely used chemotherapy drug, primarily against gastrointestinal, head and neck, and breast cancers. 5-FU has large pharmacokinetic variability resulting in unexpected toxicity or ineffective treatment. Therapeutic drug management of 5-FU minimizes toxicity and improves outcome.
View Article and Find Full Text PDFHigh-dose busulfan is an important component of many bone marrow transplantation-preparative regimens. High busulfan plasma levels have been shown to increase the chance of venoocclusive disease and low levels are associated with recurrence of disease or graft rejection. Currently, busulfan levels are monitored by physical methods that are expensive and time consuming, resulting in relatively low overall use of busulfan testing for dose adjustment.
View Article and Find Full Text PDF