This study describes an optimized DNA extraction protocol targeting ultrashort DNA molecules from single rootless hairs. It was applied to the oldest samples available to us: locks of hairs that were found in relics associated with the Romanov family. Published mitochondrial DNA genome sequences of Tsar Nicholas II and his wife, Tsarina Alexandra, made these samples ideal to assess this DNA extraction protocol and evaluate the types of genetic information that can be recovered by sequencing ultrashort fragments.
View Article and Find Full Text PDFThe maternal mode of mitochondrial DNA (mtDNA) inheritance is central to human genetics. Recently, evidence for bi-parental inheritance of mtDNA was claimed for individuals of three pedigrees that suffered mitochondrial disorders. We sequenced mtDNA using both direct Sanger and Massively Parallel Sequencing in several tissues of eleven maternally related and other affiliated healthy individuals of a family pedigree and observed mixed mitotypes in eight individuals.
View Article and Find Full Text PDFForensic Sci Int Genet
January 2020
As a first step towards integrating next generation sequencing (NGS) technology into the FBI Laboratory's operational casework, the PowerSeq™ CRM Nested System, an NGS-based mitochondrial DNA (mtDNA) control region assay, was developmentally and internally validated. The validation studies were conducted in accordance with the Scientific Working Group on DNA Analysis Methods (SWGDAM) Validation Guidelines for Forensic DNA Analysis Methods, and the FBI's Quality Assurance Standards (QAS) for Forensic DNA Testing Laboratories. The assay was shown to be highly reproducible, with variant frequencies across intra and inter-run replicates of the same sample differing, on average, by just 0.
View Article and Find Full Text PDFWhile shed hairs are one of the most commonly encountered evidence types, they are among the most limited in terms of DNA quantity and quality. As a result, nuclear DNA short tandem repeat (STR) profiling is generally unsuccessful and DNA testing of shed hair is instead performed by targeting the mitochondrial DNA control region. Although the high copy number of mitochondrial DNA relative to nuclear DNA routinely permits the recovery of mitochondrial DNA (mtDNA) data in these cases, mtDNA profiles do not offer the discriminatory power of nuclear DNA profiles.
View Article and Find Full Text PDFSome of the expected advantages of next generation sequencing (NGS) for short tandem repeat (STR) typing include enhanced mixture detection and genotype resolution via sequence variation among non-homologous alleles of the same length. However, at the same time that NGS methods for forensic DNA typing have advanced in recent years, many caseworking laboratories have implemented or are transitioning to probabilistic genotyping to assist the interpretation of complex autosomal STR typing results. Current probabilistic software programs are designed for length-based data, and were not intended to accommodate sequence strings as the product input.
View Article and Find Full Text PDFHigh throughput sequencing (HTS) has been used for a number of years in the field of paleogenomics to facilitate the recovery of small DNA fragments from ancient specimens. Recently, these techniques have also been applied in forensics, where they have been used for the recovery of mitochondrial DNA sequences from samples where traditional PCR-based assays fail because of the very short length of endogenous DNA molecules. Here, we describe the biological sexing of a ~4000-year-old Egyptian mummy using shotgun sequencing and two established methods of biological sex determination (R and R), by way of mitochondrial genome analysis as a means of sequence data authentication.
View Article and Find Full Text PDFThough the utility of next-generation sequencing (NGS) technologies for forensic short tandem repeat (STR) typing has been evident for several years, commercially available assays and software solutions developed specifically to meet forensic needs have only recently become available. One of these, the ForenSeq™ DNA Signature Prep Kit (Illumina, Inc.) sequences 27 autosomal STR (aSTR) and 24 Y chromosome STR (Y-STR) loci (concurrent with additional nuclear markers) per multiplexed sample, with automated secondary and tertiary analyses of the data accomplished via the associated ForenSeq™ Universal Analysis Software (UAS).
View Article and Find Full Text PDFSanger-type sequencing (STS) of mitochondrial DNA (mtDNA), specifically the control region (CR), is routinely employed in forensics in human identification and missing persons scenarios. Yet next-generation sequencing (NGS) has the potential to overcome some of the major limitations of STS processing, permitting reasonable paths forward for full mitochondrial genome (mtGenome) sequencing, while also offering higher-throughput and higher sensitivity capabilities. To establish the accuracy and reproducibility of NGS for the development of mtDNA data, 90 DNA extracts that were previously used to generate forensic quality full mtGenomes using STS were sequenced using Nextera XT library preparation and the Illumina MiSeq.
View Article and Find Full Text PDFThe DNA Commission of the International Society for Forensic Genetics (ISFG) is reviewing factors that need to be considered ahead of the adoption by the forensic community of short tandem repeat (STR) genotyping by massively parallel sequencing (MPS) technologies. MPS produces sequence data that provide a precise description of the repeat allele structure of a STR marker and variants that may reside in the flanking areas of the repeat region. When a STR contains a complex arrangement of repeat motifs, the level of genetic polymorphism revealed by the sequence data can increase substantially.
View Article and Find Full Text PDFForensic Sci Int Genet
September 2015
Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome (mtGenome) sequencing of forensic specimens feasible and cost-effective. A spate of recent studies has employed these new technologies to assess intraindividual mtDNA variation.
View Article and Find Full Text PDFThough investigations into the use of massively parallel sequencing technologies for the generation of complete mitochondrial genome (mtGenome) profiles from difficult forensic specimens are well underway in multiple laboratories, the high quality population reference data necessary to support full mtGenome typing in the forensic context are lacking. To address this deficiency, we have developed 588 complete mtGenome haplotypes, spanning three U.S.
View Article and Find Full Text PDFThough shed hairs are one of the most commonly encountered evidence types, they are among the most limited in terms of DNA quantity and quality. As a result, DNA testing has historically focused on the recovery of just about 600 base pairs of the mitochondrial DNA control region. Here, we describe our success in recovering complete mitochondrial genome (mtGenome) data (∼16,569bp) from single shed hairs.
View Article and Find Full Text PDFForensic mitochondrial DNA (mtDNA) testing requires appropriate, high quality reference population data for estimating the rarity of questioned haplotypes and, in turn, the strength of the mtDNA evidence. Available reference databases (SWGDAM, EMPOP) currently include information from the mtDNA control region; however, novel methods that quickly and easily recover mtDNA coding region data are becoming increasingly available. Though these assays promise to both facilitate the acquisition of mitochondrial genome (mtGenome) data and maximize the general utility of mtDNA testing in forensics, the appropriate reference data and database tools required for their routine application in forensic casework are lacking.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) control region (16024-576) sequences were generated from 281 individuals from South Korea. Robotic liquid handling, a redundant sequencing strategy, and a series of quality control checks were implemented to ensure the high quality of the dataset. This population sample showed a low random match probability (0.
View Article and Find Full Text PDFBackground: A population reference database of complete human mitochondrial genome (mtGenome) sequences is needed to enable the use of mitochondrial DNA (mtDNA) coding region data in forensic casework applications. However, the development of entire mtGenome haplotypes to forensic data quality standards is difficult and laborious. A Sanger-based amplification and sequencing strategy that is designed for automated processing, yet routinely produces high quality sequences, is needed to facilitate high-volume production of these mtGenome data sets.
View Article and Find Full Text PDFIn an effort to facilitate forensic mitochondrial DNA (mtDNA) testing in Morocco, high-quality control region sequences from 509 individuals were generated using a comprehensive processing and data review system. This large dataset of random samples from various Moroccan population groups (Arab speaking, Berber speaking, and Sahrawi speaking) exhibited a low random match probability (0.52 %) and a mean of pairwise comparisons of 13.
View Article and Find Full Text PDFTo evaluate the utility of mtDNA control region data for the purposes of forensic DNA testing in Iraq, a sample of 182 subjects (128 Arab Muslims, 15 Kurd Muslims, 22 Assyrian Christians and 17 Mandaean Arabs) was tested. High numbers of singleton haplotypes were observed among Arabs, Kurds and Assyrians, but fewer were found in Mandaeans. High molecular diversity and low random match probabilities confirmed the value of control region data in the investigation of maternal genetic lineages among the Iraqi population.
View Article and Find Full Text PDFDegraded skeletal remains generally contain limited quantities of genetic material and thus DNA-based identification efforts often target the mitochondrial DNA (mtDNA) control region due to the relative abundance of intact mtDNA as compared to nuclear DNA. In many missing person cases, however, the discriminatory power of mtDNA is inadequate to permit identification when associated anthropological, odontological, or contextual evidence is also limited, and/or the event involves a large number of individuals. In situations such as these, more aggressive amplification protocols which can permit recovery of STR data are badly needed as they may represent the last hope for conclusive identification.
View Article and Find Full Text PDFThe forensic applications of mtDNA sequencing center primarily on samples that are either highly degraded or contain little or no nuclear DNA, since the testing of these sample types is often unsuccessful with more widely used nuclear STR profiling assays. In these cases, sequence data from the noncoding mtDNA control region are targeted due to its high variability. However, the ease of authentic DNA recovery and the strategy used for recovery depend strictly on the quality of the sample.
View Article and Find Full Text PDFMitochondrial control region (16024-576) sequences were generated from 381 Kuwaiti samples. Previously, these samples were typed with the AmpFℓSTR(®) Identifiler(®) kit (Applied Biosystems, Foster City, California). Automated high throughput lab processing combined with a redundant sequencing strategy and multiple reviews of the raw electropherograms ensure the high quality of these sequences and their utility as reference population data for Kuwait.
View Article and Find Full Text PDFReliable data are crucial for all research fields applying mitochondrial DNA (mtDNA) as a genetic marker. Quality control measures have been introduced to ensure the highest standards in sequence data generation, validation and a posteriori inspection. A phylogenetic alignment strategy has been widely accepted as a prerequisite for data comparability and database searches, for forensic applications, for reconstructions of human migrations and for correct interpretation of mtDNA mutations in medical genetics.
View Article and Find Full Text PDFForensic Sci Int Genet
June 2011
Mitochondrial DNA (mtDNA) testing in the forensic context requires appropriate, high quality population databases for estimating the rarity of questioned haplotypes. Currently, however, available forensic mtDNA reference databases only include information from the mtDNA control region. While this information is obviously strengthening the foundation upon which current mtDNA identification efforts are based, these data do not adequately prepare the field for recent and rapid advancements in mtDNA typing technologies.
View Article and Find Full Text PDFThis report describes a re-examination of the remains of a young male child recovered in the Northwest Atlantic following the loss of the Royal Mail Ship Titanic in 1912 and buried as an unknown in Halifax, Nova Scotia shortly thereafter. Following exhumation of the grave in 2001, mitochondrial DNA (mtDNA) hypervariable region 1 sequencing and odontological examination of the extremely limited skeletal remains resulted in the identification of the child as Eino Viljami Panula, a 13-month-old Finnish boy. This paper details recent and more extensive mitochondrial genome analyses that indicate the remains are instead most likely those of an English child, Sidney Leslie Goodwin.
View Article and Find Full Text PDF