Publications by authors named "Jochen Reiss"

Molybdenum cofactor deficiency is an autosomal, recessively inherited metabolic disorder, which, in the absence of an effective therapy, leads to early childhood death due to neurological deterioration. In type A of the disease, cyclic pyranopterin monophosphate (cPMP) is missing, the first intermediate in the biosynthesis of the cofactor, and a biochemical substitution therapy using cPMP has been developed. A comparable approach for type B of the disease with a defect in the second step of the synthesis, formation of molybdopterin, so far has been hampered by the extreme instability of the corresponding metabolites.

View Article and Find Full Text PDF

Background: The impact of complex alleles on CFTR processing and function has yet not been investigated in native human tissue.

Methods: Intestinal current measurements (ICM) followed by CFTR immunoblot were performed on rectal biopsies taken from two siblings who are compound heterozygous for the CFTR mutations p.Phe508del and the complex allele p.

View Article and Find Full Text PDF

Molybdenum cofactor deficiency is an autosomal recessive inborn error of metabolism, which results from mutations in genes involved in Moco biosynthesis. Moco serves as a cofactor of several enzymes, including sulfite oxidase. MoCD is clinically characterized by intractable seizures and severe, rapidly progressing neurodegeneration leading to death in early childhood in the majority of known cases.

View Article and Find Full Text PDF

Molybdenum cofactor (MoCo) deficiency is a rare, autosomal-recessive disorder, mainly caused by mutations in MOCS1 (MoCo deficiency type A) or MOCS2 (MoCo deficiency type B) genes; the absence of active MoCo results in a deficiency in all MoCo-dependent enzymes. Patients with MoCo deficiency present with neonatal seizures, feeding difficulties, severe developmental delay, brain atrophy and early childhood death. Although substitution therapy with cyclic pyranopterin monophosphate (cPMP) has been successfully used in both Mocs1 knockout mice and in patients with MoCo deficiency type A, there is currently no Mocs2 knockout mouse and no curative therapy for patients with MoCo deficiency type B.

View Article and Find Full Text PDF

All molybdenum-containing enzymes other than the bacterial nitrogenase share an identical molybdenum cofactor (MoCo), which is synthesized via a conserved pathway in all organisms and therefore also is called "universal molybdenum cofactor." In humans, four molybdoenzymes are known: aldehyde oxidase, mitochondrial amidoxime reducing component (mARC), xanthine oxidoreductase, and sulfite oxidase. Mutations in the genes encoding the biosynthetic MoCo pathway enzymes abrogate the activities of all molybdoenzymes and result in the "combined" form of MoCo deficiency, which is clinically very similar to isolated sulfite oxidase deficiency, caused by mutations in the gene for the corresponding apoenzyme.

View Article and Find Full Text PDF

Molybdenum cofactor (Moco) deficiency is a rare neurometabolic disorder, characterized by neurological impairment and refractive seizures, due to toxic accumulation of sulfite in the brain. Earlier it was suggested that in Moco-deficient humans maternal clearance of neurotoxic metabolites prevents prenatal brain damage. However, limited data are available about the time profile in which neurophysiologic deterioration occurs after birth.

View Article and Find Full Text PDF

Molybdenum cofactor deficiency (MoCD) is a rare metabolic disorder characterized by severe and rapidly progressive neurologic damage caused by the functional loss of sulfite oxidase, 1 of 4 molybdenum-dependent enzymes. To date, no effective therapy is available for MoCD, and death in early infancy has been the usual outcome. We report here the case of a patient who was diagnosed with MoCD at the age of 6 days.

View Article and Find Full Text PDF

Sulfite oxidase is a mitochondrial enzyme encoded by the SUOX gene and essential for the detoxification of sulfite which results mainly from the catabolism of sulfur-containing amino acids. Decreased activity of this enzyme can either be due to mutations in the SUOX gene or secondary to defects in the synthesis of its cofactor, the molybdenum cofactor. Defects in the synthesis of the molybdenum cofactor are caused by mutations in one of the genes MOCS1, MOCS2, MOCS3 and GEPH and result in combined deficiencies of the enzymes sulfite oxidase, xanthine dehydrogenase and aldehyde oxidase.

View Article and Find Full Text PDF

In a mouse model for molybdenum cofactor deficiency as an example for an inherited metabolic disease we have determined the dosage of recombinant AAV necessary to rescue the lethal deficiency phenotype. We demonstrated long-term expression of different expression cassettes delivered in a chimeric AAV capsid of serotype 1/2 and compared different routes of application. We then studied the effect of double and triple injections at different time points after birth and found a short neonatal window for non-response of the immune system.

View Article and Find Full Text PDF

Molybdenum cofactor is essential for the function of three human enzymes: sulphite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Molybdenum cofactor deficiency is a rare autosomal recessively inherited disease. Disturbed development and damage to the brain may occur as a result of accumulation of toxic levels of sulphite.

View Article and Find Full Text PDF

The small and large subunits of molybdopterin (MPT) synthase (MOCS2A and MOCS2B), are both encoded by the MOCS2 gene in overlapping and shifted open reading frames (ORFs), which is a highly unusual structure for eukaryotes. Theoretical analysis of genomic sequences suggested that the expression of these overlapping ORFs is facilitated by the use of alternate first exons leading to alternative transcripts. Here, we confirm the existence of these overlapping transcripts experimentally.

View Article and Find Full Text PDF

Molybdenum cofactor deficiency (MIM#252150) is a severe autosomal-recessive disorder with a devastating outcome. The cofactor is the product of a complex biosynthetic pathway involving four different genes (MOCS1, MOCS2, MOCS3 and GEPH). This disorder is caused almost exclusively by mutations in the MOCS1 or MOCS2 genes.

View Article and Find Full Text PDF

Molybdenum cofactor (Moco)-deficiency is a lethal autosomal recessive disease, for which until now no effective therapy is available. The biochemical hallmark of this disorder is the inactivity of the Moco-dependent sulfite oxidase, which results in elevated sulfite and diminished sulfate levels throughout the organism. In humans, Moco-deficiency results in neurological damage, which is apparent in untreatable seizures and various brain dysmorphisms.

View Article and Find Full Text PDF

Mitochondrial transcription factor A (TFAM) is essential for transcription and replication of mammalian mitochondrial DNA (mtDNA). Disturbance of maintenance of mtDNA integrity or mitochondrial function may underlay neurodegenerative disorders such as Alzheimer disease (AD). TFAM, the gene encoding TFAM maps to chromosome 10q21.

View Article and Find Full Text PDF

Substitution therapies for orphan genetic diseases, including enzyme replacement methods, are frequently hampered by the limited availability of the required therapeutic substance. We describe the isolation of a pterin intermediate from bacteria that was successfully used for the therapy of a hitherto incurable and lethal disease. Molybdenum cofactor (Moco) deficiency is a pleiotropic genetic disorder characterized by the loss of the molybdenum-dependent enzymes sulphite oxidase, xanthine oxidoreductase and aldehyde oxidase due to mutations in Moco biosynthesis genes.

View Article and Find Full Text PDF

Molybdenum cofactor deficiency in humans results in the loss of the activity of molybdoenzymes sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. The resultant severe phenotype, which includes progressive neurological damage leading in most cases to early childhood death, results primarily from the deficiency of sulfite oxidase. All forms of molybdenum cofactor deficiency are inherited as autosomal recessive traits.

View Article and Find Full Text PDF

Human molybdenum cofactor deficiency is a rare and devastating autosomal-recessive disease for which no therapy is known. The absence of active sulfite oxidase-a molybdenum cofactor-dependent enzyme-results in neonatal seizures and early childhood death. Most patients harbor mutations in the MOCS1 gene, whose murine homolog was disrupted by homologous recombination with a targeting vector.

View Article and Find Full Text PDF

The bicistronic MOCS1 gene encodes two enzymatic activities that are necessary for the biosynthesis of the molybdenum cofactor (MoCo). Mutations in either of the two consecutive open reading frames are responsible for the majority of MoCo deficiency cases and result in a complementation group A phenotype. Two cDNA sequences have been described, which differ in the 5' sequence and encode for two forms of the protein MOCS1A with variable N-terminal sequences.

View Article and Find Full Text PDF