Background: Acute graft-versus-host disease (aGvHD) is a major cause of death for patients following allogeneic hematopoietic stem cell transplantation (HSCT). Effective management of moderate to severe aGvHD remains challenging despite recent advances in HSCT, emphasizing the importance of prophylaxis and risk factor identification.
Methods: In this study, we analyzed data from 1479 adults who underwent HSCT between 2005 and 2017 to investigate the effects of aGvHD prophylaxis and time-dependent risk factors on the development of grades II-IV aGvHD within 100 days post-HSCT.
Allogeneic hematopoietic cell transplantation (HCT) effectively treats high-risk hematologic diseases but can entail HCT-specific complications, which may be minimized by appropriate patient management, supported by accurate, individual risk estimation. However, almost all HCT risk scores are limited to a single risk assessment before HCT without incorporation of additional data. We developed machine learning models that integrate both baseline patient data and time-dependent laboratory measurements to individually predict mortality and cytomegalovirus (CMV) reactivation after HCT at multiple time points per patient.
View Article and Find Full Text PDFPredictive models can support physicians to tailor interventions and treatments to their individual patients based on their predicted response and risk of disease and help in this way to put personalized medicine into practice. In allogeneic stem cell transplantation risk assessment is to be enhanced in order to respond to emerging viral infections and transplantation reactions. However, to develop predictive models it is necessary to harmonize and integrate high amounts of heterogeneous medical data that is stored in different health information systems.
View Article and Find Full Text PDFStud Health Technol Inform
January 2013
Long-term preservation of electronic patient health information is a key issue for life-long electronic health records, however, it is poorly implemented in healthcare institutions and little attention is given to problems like obsolescence of formats and EHR applications or changing regulations, which jeopardize reusability of information after decades of preservation. We present in this paper an ontology driven approach to digital preservation and related metadata management which seems to be superior to conventional concepts of the digital library world.
View Article and Find Full Text PDF