Publications by authors named "Jochen M Rudolph"

The adhesion and degranulation-promoting adapter protein (ADAP) is expressed in T cells, NK cells, myeloid cells, and platelets. The involvement of ADAP in the regulation of receptor-mediated inside-out signaling leading to integrin activation is well characterized, especially in T cells and in platelets. Due to the fact that animal studies using conventional knockout mice are limited by the overlapping effects of the different ADAP-expressing cells, we generated conditional ADAP knockout mice (ADAP PF4-Cre) (PF4, platelet factor 4).

View Article and Find Full Text PDF

To find out new determinants required for Nef activity we performed a functional alanine scanning analysis along a discrete but highly conserved region at the core of HIV-1 Nef. We identified the GPG-motif, located at the 121-137 region of HIV-1 NL4.3 Nef, as a novel protein signature strictly required for the p56Lck dependent Nef-induced CD4-downregulation in T-cells.

View Article and Find Full Text PDF

HIV-1 Nef, an essential factor in AIDS pathogenesis, boosts virus replication in vivo. As one of its activities in CD4(+) T-lymphocytes, Nef potently retargets the Src family kinase (SFK) Lck but not closely related Fyn from the plasma membrane to recycling endosomes and the trans-Golgi network to tailor T-cell activation and optimize virus replication. Investigating the underlying mechanism we find Lck retargeting involves removal of the kinase from membrane microdomains.

View Article and Find Full Text PDF

The Nef protein of HIV-1 facilitates viral replication and disease progression in vivo. Nef disturbs the organization of immunological synapses between infected CD4(+) T lymphocytes and antigen-presenting B-lymphocytes to interfere with TCR proximal signaling. Paradoxically, Nef enhances distal TCR signaling in infected CD4(+) T lymphocytes, an effect thought to be involved in its role in AIDS pathogenesis.

View Article and Find Full Text PDF

Nef, a HIV-1 pathogenesis factor, elevates virus replication in vivo and thus progression to AIDS by incompletely defined mechanisms. As one of its biological properties, Nef enhances the infectivity of cell-free HIV-1 particles in single round infections, however it fails to provide a significant and amplifying growth advantage for HIV-1 on such virus producing cells. A major difference between HIV-1 cell-free single round infections and virus replication kinetics on T lymphocytes consists in the predominant role of cell-associated virus transmission rather than cell-free infection during multiple round virus replication.

View Article and Find Full Text PDF

Nef is an accessory protein and pathogenicity factor of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) which elevates virus replication in vivo. We recently described for HIV type 1(SF2) (HIV-1(SF2)) the potent interference of Nef with T-lymphocyte chemotaxis via its association with the cellular kinase PAK2. Mechanistic analysis revealed that this interaction results in deregulation of the actin-severing factor cofilin and thus blocks the chemokine-mediated actin remodeling required for cell motility.

View Article and Find Full Text PDF

Nef, an important pathogenicity factor of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV), elevates virus replication in vivo. Among other activities, Nef affects T-cell receptor (TCR) signaling via several mechanisms. For HIV-1 Nef these include alteration of the organization and function of the immunological synapse (IS) such as relocalization of the Lck kinase, as well as early inhibition of TCR/CD3 complex (TCR-CD3)-mediated actin rearrangements and tyrosine phosphorylation.

View Article and Find Full Text PDF