Int J Comput Assist Radiol Surg
March 2019
Purpose: The fusion of transrectal ultrasound (TRUS) and magnetic resonance (MR) images for guiding targeted prostate biopsy has significantly improved the biopsy yield of aggressive cancers. A key component of MR-TRUS fusion is image registration. However, it is very challenging to obtain a robust automatic MR-TRUS registration due to the large appearance difference between the two imaging modalities.
View Article and Find Full Text PDFPurpose: Intraoperative dosimetry in low-dose-rate (LDR) permanent prostate brachytherapy requires accurate localization of the implanted seeds with respect to the prostate anatomy. Transrectal Ultrasound (TRUS) imaging, which is the main imaging modality used during the procedure, is not sufficiently robust for accurate seed localization. We present a method for integration of electromagnetic (EM) tracking into LDR prostate brachytherapy procedure by fusing it with TRUS imaging for seed localization.
View Article and Find Full Text PDFObjective: Approximately 15% of patients who undergo radical prostatectomy (RP) for prostate cancer develop local recurrence, which is heralded by a rise in serum prostate-specific antigen (PSA) levels. Early detection and treatment of recurrence improves the outcome of salvage treatment. We investigated the ability of multiparametric magnetic resonance imaging (mpMRI)-transrectal ultrasound (TRUS) fusion-guided biopsy (FGB) combined with "cognitive biopsy" to confirm local recurrence of prostate cancer after RP.
View Article and Find Full Text PDFIn magnetic resonance iimaging- (MRI-) ultrasound (US) guided biopsy, suspicious lesions are identified on MRI, registered on US, and targeted during biopsy. The registration can be performed either by a human operator (visual registration) or by fusion software. Previous studies showed that software registration is fairly accurate in locating suspicious lesions and helps to improve the cancer detection rate.
View Article and Find Full Text PDFPurpose: Men diagnosed with atypical small acinar proliferation are counseled to undergo early rebiopsy because the risk of prostate cancer is high. However, random rebiopsies may not resample areas of concern. Magnetic resonance imaging/transrectal ultrasound fusion guided biopsy offers an opportunity to accurately target and later retarget specific areas in the prostate.
View Article and Find Full Text PDFPurpose: The accurate delivery of high-dose-rate brachytherapy is dependent on the correct identification of the position and shape of the treatment catheters. In many brachytherapy clinics, transrectal ultrasound (TRUS) imaging is used to identify the catheters. However, manual catheter identification on TRUS images can be time consuming, subjective, and operator dependent because of calcifications and distal shadowing artifacts.
View Article and Find Full Text PDFProstate biopsies are usually performed by urologists in the office setting using transrectal ultrasound (US) guidance. The current standard of care involves obtaining 10-14 cores from different anatomic sections. Biopsies are usually not directed into a specific lesion because most prostate cancers are not visible on transrectal US.
View Article and Find Full Text PDFBackground: Gleason scores from standard, 12-core prostate biopsies are upgraded historically in 25-33% of patients. Multiparametric prostate magnetic resonance imaging (MP-MRI) with ultrasound (US)-targeted fusion biopsy may better sample the true gland pathology.
Objective: The rate of Gleason score upgrading from an MRI/US-fusion-guided prostate-biopsy platform is compared with a standard 12-core biopsy regimen alone.
Purpose: We determine the usefulness of multiparametric magnetic resonance imaging in detecting prostate cancer, with a specific focus on detecting higher grade prostate cancer.
Materials And Methods: Prospectively 583 patients who underwent multiparametric magnetic resonance imaging and subsequent prostate biopsy at a single institution were evaluated. On multiparametric magnetic resonance imaging, lesions were identified and scored as low, moderate or high suspicion for prostate cancer based on a validated scoring system.
In prostate brachytherapy procedures, combining high-resolution endorectal coil (ERC)-MRI with Computed Tomography (CT) images has shown to improve the diagnostic specificity for malignant tumors. Despite such advantage, there exists a major complication in fusion of the two imaging modalities due to the deformation of the prostate shape in ERC-MRI. Conventionally, nonlinear deformable registration techniques have been utilized to account for such deformation.
View Article and Find Full Text PDFPurpose: Patients with negative transrectal ultrasound biopsies and a persistent clinical suspicion are at risk for occult but significant prostate cancer. The ability of multiparametric magnetic resonance imaging/ultrasound fusion biopsy to detect these occult prostate lesions may make it an effective tool in this challenging scenario.
Materials And Methods: Between March 2007 and November 2011 all men underwent prostate 3 T endorectal coil magnetic resonance imaging.
Cardiovasc Intervent Radiol
October 2012
Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system.
View Article and Find Full Text PDFThere has been a resurgent interest in intravoxel incoherent motion (IVIM) MR imaging to obtain perfusion as well as diffusion information on lesions, in which the diffusion was modeled as Gaussian diffusion. However, it was observed that this diffusion deviated from expected monoexponential decay at high b-values and the reported perfusion in prostate is contrary to the findings in dynamic contrast-enhanced (DCE) MRI studies and angiogenesis. Thus, this work is to evaluate the effect of different b-values on IVIM perfusion fractions (f) and diffusion coefficients (D) for prostate cancer detection.
View Article and Find Full Text PDFPurpose: A novel platform was developed that fuses pre-biopsy magnetic resonance imaging with real-time transrectal ultrasound imaging to identify and biopsy lesions suspicious for prostate cancer. The cancer detection rates for the first 101 patients are reported.
Materials And Methods: This prospective, single institution study was approved by the institutional review board.
Using the fusion of pre-operative MRI and real time intra-procedural transrectal ultrasound (TRUS) to guide prostate biopsy has been shown as a very promising approach to yield better clinical outcome than the routinely performed TRUS only guided biopsy. In several situations of the MRI/TRUS fusion guided biopsy, it is important to know the exact location of the deployed biopsy needle, which is imaged in the TRUS video. In this paper, we present a method to automatically detect and segment the biopsy needle in TRUS.
View Article and Find Full Text PDFDuring transrectal ultrasound (TRUS)-guided prostate biopsies, the actual location of the biopsy site is rarely documented. Here, we demonstrate the capability of TRUS-magnetic resonance imaging (MRI) image fusion to document the biopsy site and correlate biopsy results with multi-parametric MRI findings. Fifty consecutive patients (median age 61 years) with a median prostate-specific antigen (PSA) level of 5.
View Article and Find Full Text PDFProstate T(2) mapping was performed in 34 consecutive patients using an accelerated multiecho spin-echo sequence with 4-fold k-space undersampling leading to a net acceleration factor of 3.3 on a 3T scanner. The mean T(2) values from the accelerated and conventional, unaccelerated sequences demonstrated a very high correlation (r = 0.
View Article and Find Full Text PDFPurpose: We determined whether there is a correlation between D'Amico risk stratification and the degree of suspicion of prostate cancer on multiparametric magnetic resonance imaging based on targeted biopsies done with our electromagnetically tracked magnetic resonance imaging/ultrasound fusion platform.
Materials And Methods: A total of 101 patients underwent 3 Tesla multiparametric magnetic resonance imaging of the prostate, consisting of T2, dynamic contrast enhanced, diffusion weighted and spectroscopy images in cases suspicious for or with a diagnosis of prostate cancer. All prostate magnetic resonance imaging lesions were then identified and graded by the number of positive modalities, including low-2 or fewer, moderate-3 and high-4 showing suspicion on multiparametric magnetic resonance imaging.
Purpose: To investigate whether apparent diffusion coefficients (ADCs) derived from diffusion-weighted (DW) magnetic resonance (MR) imaging at 3 T correlate with the clinical risk of prostate cancer in patients with tumors that are visible on MR images, with MR imaging/transrectal ultrasonography (US) fusion-guided biopsy as a reference.
Materials And Methods: Forty-eight consecutive patients (median age, 60 years; median serum prostate-specific antigen value, 6.3 ng/mL) who underwent DW imaging during 3-T MR imaging with an endorectal coil were included in this retrospective institutional review board-approved study, and informed consent was obtained from each patient.
IEEE Trans Biomed Eng
March 2011
Automatic segmentation of the prostate from 2-D transrectal ultrasound (TRUS) is a highly desired tool in many clinical applications. However, it is a very challenging task, especially for segmenting the base and apex of the prostate due to the large shape variations in those areas compared to the midgland, which leads many existing segmentation methods to fail. To address the problem, this paper presents a novel TRUS video segmentation algorithm using both global population-based and patient-specific local shape statistics as shape constraint.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
November 2010
Automatic delineation of the prostate boundary in transrectal ultrasound (TRUS) can play a key role in image-guided prostate intervention. However, it is a very challenging task for several reasons, especially due to the large variation of the prostate shape from the base to the apex. To deal with the problem, a new method for incrementally learning the patient-specific local shape statistics is proposed in this paper to help achieve robust and accurate boundary delineation over the entire prostate gland.
View Article and Find Full Text PDFNavigation systems, devices, and intraprocedural software are changing the way interventional oncology is practiced. Before the development of precision navigation tools integrated with imaging systems, thermal ablation of hard-to-image lesions was highly dependent on operator experience, spatial skills, and estimation of positron emission tomography-avid or arterial-phase targets. Numerous navigation systems for ablation bring the opportunity for standardization and accuracy that extends the operator's ability to use imaging feedback during procedures.
View Article and Find Full Text PDFOBJECTIVE To develop a system that documents the location of transrectal ultrasonography (TRUS)-guided prostate biopsies by fusing them to MRI scans obtained prior to biopsy, as the actual location of prostate biopsies is rarely known. PATIENTS AND METHODS Fifty patients (median age 61) with a median prostate-specific antigen (PSA) of 5.8 ng/ml underwent 3T endorectal coil MRI prior to biopsy.
View Article and Find Full Text PDFAutomatic prostate segmentation in transrectal ultrasound (TRUS) images is highly desired in many clinical applications. However, robust and automated prostate segmentation is challenging due to the low SNR in TRUS and the missing boundaries in shadow areas caused by calcifications or hyperdense prostate tissues. This paper presents a novel method of utilizing a priori shapes estimated from partial contours for segmenting the prostate.
View Article and Find Full Text PDFComput Aided Surg
September 2008
Targeted prostate biopsy is challenging because no currently established imaging modality is both accurate for prostate cancer diagnosis and cost-effective for real-time procedure guidance. A system that fuses real-time transrectal ultrasound images with previously acquired endorectal coil MRI images for prostate biopsy guidance is presented here. The system uses electromagnetic tracking and intraoperative image registration to superimpose the MRI data on the ultrasound image.
View Article and Find Full Text PDF