Precise NMR structural determination of distinct hydrogen-bonded secondary folds in unnatural peptides is demonstrated by using residual dipolar couplings (RDCs), measured in organic solvent media. The results show that the conventional constraints, (3)J(HH) and NOE-derived distances alone do not allow the accurate structural elucidation even for rigid foldamers and emphasize the need of RDC-based structure validation and refinement for unnatural peptides in particular and small organic molecules in general.
View Article and Find Full Text PDFThe main purpose of homonuclear Hartmann-Hahn or TOCSY experiments is the assignment of spin systems based on efficient coherence transfer via scalar couplings. In partially aligned samples, however, magnetization is also transferred via residual dipolar couplings (RDCs) and therefore through space correlations can be observed in COSY and TOCSY experiments that make the unambiguous assignment of covalently bound spins impossible. In this article, we show that the JESTER-1 multiple pulse sequence, originally designed for broadband heteronuclear isotropic Hartmann-Hahn transfer, efficiently suppresses the homonuclear dipolar coupling Hamiltonian.
View Article and Find Full Text PDFInvestigation of the DNA repair process performed by the spore photoproduct (SP) lyase repair enzyme is strongly hampered by the lack of defined substrates needed for detailed enzymatic studies. The problem is particularly severe because the repair enzyme belongs to the class of strongly oxygen-sensitive radical (S)-adenosylmethionine (SAM) enzymes, which are notoriously difficult to handle. We report the synthesis of the spore photoproduct analogues 1 a and 1 b, which have open backbones and are diastereoisomers.
View Article and Find Full Text PDFNew developments concerning alignment media for apolar solvents like chloroform make it possible to measure anisotropic parameters such as residual dipolar couplings (RDCs) at relatively low concentrations and natural isotopic abundance. As RDCs provide structural restraints with respect to an external coordinate system, long-range structural arrangements of the time-averaged structure can be determined with high precision. The method is demonstrated on the well-studied cyclo-undecapeptide Cyclosporin A (CsA), for which crystal and conventionally derived NMR structures are available.
View Article and Find Full Text PDF