Publications by authors named "Jochen Hohl-Ebinger"

Highly accurate short-circuit current measurements of photovoltaic devices require spectrally adjustable radiation sources. This paper presents an optical setup, which is able to generate and adjust the spectral irradiance in the wavelength range from 355 nm to 1200 nm with an optical resolution of 7 nm to 15 nm. A grating light valve (GLV) is used as a spectral shaping tool.

View Article and Find Full Text PDF

I(SC)-V(OC) curves measured by the suns-V(OC) method are widely used for solar cell characterization due to its being unaffected by series resistance effects. A common setup for this measurement system uses a xenon photoflash for illumination purposes, resulting in a fast acquisition of the suns-V(OC) measurement data during the decaying edge of one flash. However, the use of a xenon photoflash accompanies also several disadvantages.

View Article and Find Full Text PDF

A new, extremely simple concept for the use of energy transfer as a means to the enhancement of light absorption and current generation in the dye solar cell (DSC) is presented. This model study is based upon a carboxy-functionalized 4-aminonaphthalimide dye (carboxy-fluorol) as donor, and (NBu4)2[Ru(dcbpy)2(NCS)2] (N719) as acceptor chromophores. A set of three different devices is assembled containing either exclusively carboxy-fluorol or N719, or a mixture of both.

View Article and Find Full Text PDF

A new bichromophoric dyad based on an alkyl-functionalized aminonaphthalimide as energy-donor chromophore and [Ru(dcbpy)2(acac)]Cl (dcbpy=4,4'-dicarboxybipyridine, acac=acetylacetonato) as energy acceptor and sensitizing chromophore is synthesized. Efficient quenching of the donor-chromophore emission is observed in solution, presumably due to resonant energy transfer. This dyad is then used as a sensitizer in a dye solar cell.

View Article and Find Full Text PDF