Targeted alpha therapies (TAT) are an innovative class of therapies for cancer treatment. The unique mode-of-action of TATs is the induction of deleterious DNA double-strand breaks. Difficult-to-treat cancers, such as gynecologic cancers upregulating the chemoresistance P-glycoprotein (p-gp) and overexpressing the membrane protein mesothelin (MSLN), are promising targets for TATs.
View Article and Find Full Text PDFSubtype-selective estrogens are of increasing importance as tools used to unravel physiological roles of the estrogen receptors, ERalpha and ERbeta, in various species. Although human ERalpha and ERbeta differ by only two amino acids within the binding pockets, we and others recently succeeded in generating subtype-selective agonists. We have proposed that the selectivity of the steroidal compounds 16alpha-lactone-estradiol (16alpha-LE(2), hERalpha selective) and 8beta-vinyl-estradiol (8beta-VE(2), hERbeta selective) is based on the interaction of certain substituents of these compounds with essentially one amino acid in the respective ER binding pockets.
View Article and Find Full Text PDF