Publications by authors named "Jochen Feldmann"

In photocatalysis, photogenerated charge separation is pivotal and can be achieved through various mechanisms. Building heterojunctions is a promising method to enhance charge separation, where effective contact and charge exchange between heterojunction components remains challenging. Mostly used synthesis processes for making heterostructures require high temperatures, difficult processes, or expensive materials.

View Article and Find Full Text PDF

Quantum dots (QDs) are semiconductor nanocrystals whose optical properties can be tuned by altering their size. By combining QDs with dyes we can make hybrid QD-dye systems exhibiting energy transfer (ET) between QDs and dyes, which is important in sensing and lighting applications. In conventional QDs that need a shell to passivate surface defects, ET usually proceeds through Förster resonance energy transfer (FRET) that requires significant spectral overlap between QD emission and dye absorbance, as well as large oscillator strengths of those transitions.

View Article and Find Full Text PDF

Manganese doping has been demonstrated as a versatile tool to tune the emission of CsPbCl nanocrystals (NCs). Although this has been demonstrated in nanocubes and nanoplatelets, strategies for doping Mn in size-tunable, excitonic CsPbCl quantum dots (QDs) remain absent. In this work, we demonstrate the synthesis of size-tunable spheroidal CsPbCl:Mn QDs, which can be obtained by a water-hexane interfacial combined anion and cation exchange strategy starting from CsPbBr QDs.

View Article and Find Full Text PDF

Optically excited electronic excitations are coupled to the soft and polar halide perovskite lattice, generating coherent phonons after subpicosecond interband laser-excitation. In Ag-based halide double perovskites, Ag-vacancies can bind free excitons, resulting in a pronounced bound exciton resonance. Here, we report the detection of three modulation frequencies corresponding to coherent phonons in Ag-based double perovskite nanocrystals at distinct spectral positions at the bound exciton resonance.

View Article and Find Full Text PDF

Photocatalytic water splitting is a promising approach to generating sustainable hydrogen. However, the transport of photoelectrons to the catalyst sites, usually within ps-to-ns timescales, is much faster than proton delivery (∼μs), which limits the activity. Therefore, the acceleration of abstraction of protons from water molecules towards the catalytic sites to keep up with the electron transfer rate can significantly promote hydrogen production.

View Article and Find Full Text PDF

Postsynthetic metal salt treatments are frequently employed in the luminescence enhancement of quantum dots (QDs); however, its microscopic picture remains unclear. CsPbBr-QDs, featuring strong excitonic absorption and high photoluminescence (PL) quantum yield, are ideal QDs to unravel the intricate interaction between QDs and such surface-bound metal salts. Herein, we study this interaction based on the controlled PL quenching of CsPbBr-QDs with BiBr.

View Article and Find Full Text PDF

Correction for 'Atomically flat semiconductor nanoplatelets for light-emitting applications' by Bing Bai , , 2023, , 318-360, https://doi.org/10.1039/D2CS00130F.

View Article and Find Full Text PDF

The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applications. Such NPLs have electronic structures similar to those of quantum wells in which excitons are predominantly confined along the vertical direction, while electrons are free to move in the lateral directions, resulting in unique optical properties, such as extremely narrow emission line width, short photoluminescence (PL) lifetime, high gain coefficient, and giant oscillator strength transition (GOST). These unique optical properties make NPLs favorable for high color purity light-emitting applications, in particular in light-emitting diodes (LEDs), backlights for liquid crystal displays (LCDs) and lasers.

View Article and Find Full Text PDF

Using orbital angular momentum beams in a Michelson interferometer opens the possibility for non-invasive measurements of refractive index changes down to 10 refractive index units. We demonstrate the application of a twisted light interferometer to directly measure the concentration of NaCl and glucose solutions label-free and in situ and to monitor temperature differences in the mK-µK range. From these measurements we can extract a correlation of the refractive index to concentration and to temperature from a liquid sample which is in good agreement with literature.

View Article and Find Full Text PDF

Quantum dots (QDs) offer unique physical properties and novel application possibilities like single-photon emitters for quantum technologies. While strongly confined III-V and II-VI QDs have been studied extensively, their complex valence band structure often limits clear observations of individual transitions. In recently emerged lead-halide perovskites, band degeneracies are absent around the bandgap reducing the complexity of optical spectra.

View Article and Find Full Text PDF

Carbon dots (CDs), an emerging class of nanomaterials, have attracted considerable attention due to their intriguing photophysical properties. Despite their indisputable potential of utilization in many fascinating areas of research and life, some fundamental aspects concerning their structure and the origin of their photoluminescence (PL) properties still await clarification. The mechanism of PL emission of CDs is associated with their structure, which is dependent on the carbonization process.

View Article and Find Full Text PDF

Mn-doping in cesium lead halide perovskite nanoplatelets (NPls) is of particular importance where strong quantum confinement plays a significant role towards the exciton-dopant coupling. In this work, we report an immiscible bi-phasic strategy for post-synthetic Mn-doping of CsPbX (X=Br, Cl) NPls. A systematic study shows that electron-donating oleylamine acts as a shuttle ligand to transport MnX through the water-hexane interface and deliver it to the NPls.

View Article and Find Full Text PDF

It usually requires high temperature and high pressure to reform methanol with water to hydrogen with high turnover frequency (TOF). Here we show that hydrogen can be produced from alkaline methanol on a light-triggered multi-layer system with a very high hydrogen evolution rate up to ca. 1 μmol s under the illumination of a standard Pt-decorated carbon nitride.

View Article and Find Full Text PDF

In recent years, radiative cooling has become a topic of considerable interest for applications in the context of thermal building management and energy saving. The idea to direct thermal radiation in a controlled way to achieve contactless sample cooling for laboratory applications, however, is scarcely explored. Here, we present an approach to obtain spatially structured radiative cooling.

View Article and Find Full Text PDF

Bismuth oxyiodide (BiOI) is a promising material for photocatalysis combining intriguing optical and structural properties. We show that excitation by a femtosecond laser pulse creates coherent phonons inducing a time-variant oscillating modulation of the optical density. We find that the two underlying frequencies originate from lattice vibrations along the [001] crystallographic axis, the stacking direction of oppositely charged layers in BiOI.

View Article and Find Full Text PDF

Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications.

View Article and Find Full Text PDF

The halide ions of organic-inorganic hybrid perovskites can strongly influence the interaction between the central organic moiety and the inorganic metal halide octahedral units and thus their lattice vibrations. Here, we report the halide-ion-dependent vibrational coherences in formamidinium lead halide (FAPbX, X = Br, I) perovskite nanocrystals (PNCs) via the combination of femtosecond pump-probe spectroscopy and density functional theory calculations. We find that the FAPbX PNCs generate halide-dependent coherent vibronic wave packets upon above-bandgap non-resonant excitation.

View Article and Find Full Text PDF

Carbon dots (CDs) are a promising nanomaterial for photocatalytic applications. However, the mechanism of the photocatalytic processes remains the subject of a debate due to the complex internal structure of the CDs, comprising crystalline and molecular units embedded in an amorphous matrix, rendering the analysis of the charge and energy transfer pathways between the constituent parts very challenging. Here we propose that the photobasic effect, that is the abstraction of a proton from water upon excitation by light, facilitates the photoexcited electron transfer to the proton.

View Article and Find Full Text PDF

Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs.

View Article and Find Full Text PDF

Perovskite nanocrystals (NCs) have revolutionized optoelectronic devices because of their versatile optical properties. However, controlling and extending these functionalities often requires a light-management strategy involving additional processing steps. Herein, we introduce a simple approach to shape perovskite nanocrystals (NC) into photonic architectures that provide light management by directly shaping the active material.

View Article and Find Full Text PDF

Exciton-exciton annihilation (EEA) and Auger recombination are detrimental processes occurring in semiconductor optoelectronic devices at high carrier densities. Despite constituting one of the main obstacles for realizing lasing in semiconductor nanocrystals (NCs), the dependencies on NC size are not fully understood, especially for those with both weakly and strongly confined dimensions. Here, we use differential transmission spectroscopy to investigate the dependence of EEA on the physical dimensions of thickness-controlled 2D halide perovskite nanoplatelets (NPls).

View Article and Find Full Text PDF

Lead halide perovskites (LHPs) exhibit large spin-orbit coupling (SOC), leading to only twofold-degenerate valence and conduction bands and therefore allowing for efficient optical orientation. This makes them ideal materials to study charge carrier spins. With this study we elucidate the spin dynamics of photoexcited charge carriers and the underlying spin relaxation mechanisms in CsPbI nanocrystals by employing time-resolved differential transmission spectroscopy (DTS).

View Article and Find Full Text PDF

Lead-free halide double perovskites have emerged as a nontoxic alternative to the heavily researched lead-based halide perovskites. However, their optical properties and the initial charge carrier relaxation processes are under debate. In this study, we apply time-resolved photoluminescence and differential transmission spectroscopy to investigate the photoexcited charge carrier dynamics within the indirect band structure of CsAgBiBr nanocrystals.

View Article and Find Full Text PDF

The concept of doping Mn ions into II-VI semiconductor nanocrystals (NCs) was recently extended to perovskite NCs. To date, most studies on Mn doped NCs focus on enhancing the emission related to the Mn dopant via an energy transfer mechanism. Herein, we found that the doping of Mn ions into CsPbCl NCs not only results in a Mn -related orange emission, but also strongly influences the excitonic properties of the host NCs.

View Article and Find Full Text PDF

Metal halide perovskites are promising materials for a range of applications. The synthesis of light-emitting perovskite nanorods has become popular recently. Thus far, the facile synthesis of perovskite nanorods remains elusive.

View Article and Find Full Text PDF