Publications by authors named "Jochen Ditterich"

The cortex has a disputed role in monitoring postural equilibrium and intervening in cases of major postural disturbances. Here, we investigate the patterns of neural activity in the cortex that underlie neural dynamics during unexpected perturbations. In both the primary sensory (S1) and motor (M1) cortices of the rat, unique neuronal classes differentially covary their responses to distinguish different characteristics of applied postural perturbations; however, there is substantial information gain in M1, demonstrating a role for higher-order computations in motor control.

View Article and Find Full Text PDF

Background: Closed-loop phase-locked stimulation experiments are rare due to the unavailability of user-friendly algorithms and devices. Our goal is to provide an algorithm for the detection of oscillatory activity in local field potentials (LFPs) and phase prediction, which is user-friendly and robust to non-stationarities in LFPs of behaving animals.

New Method: We propose an algorithm that only requires specification of the frequency range within which oscillatory episodes are tracked.

View Article and Find Full Text PDF

Human subjects of both sexes were asked to make a perceptual decision between multiple directions of visual motion. In addition to reporting a primary choice, they also had to report a second guess, indicating which of the remaining options they would rather bet on, assuming that they got their primary choice wrong. The second guess was clearly informed by the amounts of sensory evidence that were provided for the different options.

View Article and Find Full Text PDF

Many tasks used to study decision-making encourage subjects to integrate evidence over time. Such tasks are useful to understand how the brain operates on multiple samples of information over prolonged timescales, but only if subjects actually integrate evidence to form their decisions. We explored the behavioral observations that corroborate evidence-integration in a number of task-designs.

View Article and Find Full Text PDF

People with Parkinson's disease (PD) show impaired decision-making when sensory and memory information must be combined. This recently identified impairment results from an inability to accumulate the proper amount of information needed to make a decision and appears to be independent of dopamine tone and reinforcement learning mechanisms. Although considerable work focuses on PD and decisions involving risk and reward, in this Opinion article we propose that the emerging findings in perceptual decision-making highlight the multisystem nature of PD, and that unraveling the neuronal circuits underlying perceptual decision-making impairment may help in understanding other cognitive impairments in people with PD.

View Article and Find Full Text PDF

Piaget's genetic epistemology has provided the constructivist approach upon which child developmental theories were founded, in that infants are thought to progress through distinct cognitive stages until they reach maturity in their early 20's. However, it is now well established that cognition continues to develop after early adulthood, and several "neo-Piagetian" theories have emerged in an attempt to better characterize cognitive development. For example, Kegan's Constructive Developmental Theory (CDT) argues that the thought processes used by adults to construct their reality change over time, and reaching higher stages of cognitive development entails becoming objectively aware of emotions and beliefs that were previously in the realm of the subconscious.

View Article and Find Full Text PDF

Perceptual decisions in the presence of decision-irrelevant sensory information require a selection of decision-relevant sensory evidence. To characterize the mechanism that is responsible for separating decision-relevant from irrelevant sensory information we asked human subjects to make judgments about one of two simultaneously present motion components in a random dot stimulus. Subjects were able to ignore the decision-irrelevant component to a large degree, but their decisions were still influenced by the irrelevant sensory information.

View Article and Find Full Text PDF

Perceptual decisions arise after considering the available sensory evidence [1]. When sensory information is unreliable, a good strategy is to rely on previous experience in similar situations to guide decisions [2-6]. It is well known that patients with Parkinson's disease (PD) are impaired at value-based decision-making [7-11].

View Article and Find Full Text PDF

Latimeret al (Reports, 10 July 2015, p. 184) claim that during perceptual decision formation, parietal neurons undergo one-time, discrete steps in firing rate instead of gradual changes that represent the accumulation of evidence. However, that conclusion rests on unsubstantiated assumptions about the time window of evidence accumulation, and their stepping model cannot explain existing data as effectively as evidence-accumulation models.

View Article and Find Full Text PDF

Previous neurophysiological studies of perceptual decision-making have focused on single-unit activity, providing insufficient information about how individual decisions are accomplished. For the first time, we recorded simultaneously from multiple decision-related neurons in parietal cortex of monkeys performing a perceptual decision task and used these recordings to analyze the neural dynamics during single trials. We demonstrate that decision-related lateral intraparietal area neurons typically undergo gradual changes in firing rate during individual decisions, as predicted by mechanisms based on continuous integration of sensory evidence.

View Article and Find Full Text PDF

Experimental studies of decision-making have put a strong emphasis on choices between two alternatives. However, real-life decisions often involve multiple alternatives. This article provides an overview of theoretical frameworks that have been proposed to account for behavioral data from both economic and perceptual multialternative decision-making.

View Article and Find Full Text PDF

To investigate the contribution of parietal cortex to perceptual decisions, we trained monkeys on a perceptual decision task that allowed simultaneous experimental control over how much sensory evidence was provided for each of 3 possible alternative choices and recorded single unit activity and local field potentials (LFPs) from the lateral intraparietal area (LIP). While both the behavior and the spiking activity were largely determined by the difference between how much supporting sensory evidence was provided for a particular choice (pro evidence) and how much sensory evidence was provided for the other alternatives (anti evidence), the LFP reflected roughly the sum of these 2 components. Furthermore, the firing rates showed an earlier influence of the anti evidence than the pro evidence.

View Article and Find Full Text PDF

While computer-aided planning of human neurosurgeries is becoming more and more common, animal researchers still largely rely on paper atlases for planning their approach before implanting recording chambers to perform invasive recordings of neural activity, which makes this planning process tedious and error-prone. Here we present SPLASh (Stereotactic PLAnning Software), an interactive software tool for the stereotactic planning of recording chamber placement and electrode trajectories. SPLASh has been developed for monkey cortical recordings and relies on a combination of structural MRIs and electronic brain atlases.

View Article and Find Full Text PDF

While there seems to be relatively wide agreement about perceptual decision making relying on integration-to-threshold mechanisms, proposed models differ in a variety of details. This study compares a range of mechanisms for multi-alternative perceptual decision making, including integration with and without leakage, feedforward and feedback inhibition for mediating the competition between integrators, as well as linear and non-linear mechanisms for combining signals across alternatives. It is shown that a number of mechanisms make very similar predictions for the decision behavior and are therefore able to explain previously published data from a multi-alternative perceptual decision task.

View Article and Find Full Text PDF

Encoding and dealing with conflicting information is essential for successful decision making in a complex environment. In the present fMRI study, stimulus conflict and response conflict are contrasted in the context of a perceptual decision-making dot-motion discrimination task. Stimulus conflict was manipulated by varying dot-motion coherence along task-relevant and task-irrelevant dimensions.

View Article and Find Full Text PDF

Previous studies and models of perceptual decision making have largely focused on binary choices. However, we often have to choose from multiple alternatives. To study the neural mechanisms underlying multialternative decision making, we have asked human subjects to make perceptual decisions between multiple possible directions of visual motion.

View Article and Find Full Text PDF

Computational models based on diffusion processes have been proposed to account for human decision-making behaviour in a variety of tasks. The basic idea is that the brain keeps accumulating noisy sensory evidence until a critical level is reached. This study explores whether such models account for the speed and accuracy of perceptual decisions in a reaction-time random dot motion direction discrimination task, and whether they explain the decision-related activity of neurons recorded from the parietal cortex (area LIP) of monkeys performing the task.

View Article and Find Full Text PDF

Oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD), and the enzyme myeloperoxidase (MPO) has been identified as one source of reactive oxidants. MPO-mediated oxidation of high-density lipoprotein (HDL) plays an important role in the pathogenesis of atherosclerosis and although several links between cardiovascular disease and AD have been reported, surprisingly little is known about the role of HDL oxidation in AD. We show that MPO binding to isolated HDL depends on the lipidation state of apolipoprotein A-I (apo A-I), the major protein constituent of HDL.

View Article and Find Full Text PDF

Computational models based on diffusion processes have been proposed to account for human decision making behaviour in a variety of tasks. This study explores whether such models account for the speed and accuracy of perceptual decisions in a reaction-time random dot motion direction-discrimination task and whether they explain the decision-related activity of neurons recorded from the parietal cortex (area LIP) of monkeys performing the task. While a relatively simple diffusion model can explain the psychometric function and the mean response times, it fails to account for the response time distributions.

View Article and Find Full Text PDF

A central goal of cognitive neuroscience is to elucidate the neural mechanisms underlying decision-making. Recent physiological studies suggest that neurons in association areas may be involved in this process. To test this, we measured the effects of electrical microstimulation in the lateral intraparietal area (LIP) while monkeys performed a reaction-time motion discrimination task with a saccadic response.

View Article and Find Full Text PDF

Decisions based on uncertain information may benefit from an accumulation of information over time. We asked whether such an accumulation process may underlie decisions about the direction of motion in a random dot kinetogram. To address this question we developed a computational model of the decision process using ensembles of neurons whose spiking activity mimics neurons recorded in the extrastriate visual cortex (area MT or V5) and a sensorimotor association area of the parietal lobe (area LIP).

View Article and Find Full Text PDF

Direction-selective neurons in the middle temporal visual area (MT) are crucially involved in motion perception, although it is not known exactly how the activity of these neurons is interpreted by the rest of the brain. Here we report that in a two-alternative task, the activity of MT neurons is interpreted as evidence for one direction and against the other. We measured the speed and accuracy of decisions as rhesus monkeys performed a direction-discrimination task.

View Article and Find Full Text PDF

The authors investigated whether and, if so, how velocity information is used to control predictive manual pointing movements and saccades. Participants (N = 6) intercepted an occluded moving target as if it were still visible. They kept their eyes fixated while the target moved.

View Article and Find Full Text PDF