Publications by authors named "Jochen Campo"

The filling of single-wall carbon nanotubes (SWCNTs) with dye molecules has become a novel path to add new functionalities through the mutual interaction of confined dyes and host SWCNTs. In particular cases, the encapsulated dye molecules form strongly interacting molecular arrays and these result in severely altered optical properties of the dye molecules. Here, we present the encapsulation of a squaraine dye inside semiconducting chirality-sorted SWCNTs with diameters ranging from ∼1.

View Article and Find Full Text PDF

Specific and tunable modification to the optical properties of single-wall carbon nanotubes (SWCNTs) is demonstrated through direct encapsulation into the nanotube interior of guest molecules with widely varying static dielectric constants. Filled through simple ingestion of the guest molecule, each SWCNT population is demonstrated to display a robust modification to absorbance, fluorescence, and Raman spectra. Over 30 distinct compounds, covering static dielectric constants from 1.

View Article and Find Full Text PDF

The hollow cores and well-defined diameters of single-walled carbon nanotubes (SWCNTs) allow for creation of one-dimensional hybrid structures by encapsulation of various molecules. Absorption and near-infrared photoluminescence-excitation (PLE) spectroscopy reveal that the absorption spectrum of encapsulated 1,3-bis[4-(dimethylamino)phenyl]-squaraine dye molecules inside SWCNTs is modulated by the SWCNT diameter, as observed through excitation energy transfer (EET) from the encapsulated molecules to the SWCNTs, implying a strongly diameter-dependent stacking of the molecules inside the SWCNTs. Transient absorption spectroscopy, simultaneously probing the encapsulated dyes and the host SWCNTs, demonstrates this EET, which can be used as a route to diameter-dependent photosensitization, to be fast (sub-picosecond).

View Article and Find Full Text PDF

Three-stage pH-switchable organic second-order nonlinear optical (SO NLO) chromophores are synthesized and characterized by wavelength-dependent linear and nonlinear spectroscopy. The chromophores exhibit huge SO NLO responses in their "on" stages, and large switching contrasts between adjacent stages in both SO NLO response and fluorescence quantum yield, with moreover different "on/off" sequences for closely related compounds.

View Article and Find Full Text PDF

Asymmetric dye molecules have unusual optical and electronic properties. For instance, they show a strong second-order nonlinear optical (NLO) response that has attracted great interest for potential applications in electro-optic modulators for optical telecommunications and in wavelength conversion of lasers. However, the strong Coulombic interaction between the large dipole moments of these molecules favours a pairwise antiparallel alignment that cancels out the NLO response when incorporated into bulk materials.

View Article and Find Full Text PDF
Article Synopsis
  • A new dispersion model has been developed to accurately determine molecular first hyperpolarizability (β), taking into account both homogeneous and inhomogeneous line broadening effects.
  • By integrating the absorption spectrum with a key parameter for inhomogeneous line width, the model provides a reliable framework for analyzing nonlinear optical data without needing detailed information on line broadening mechanisms.
  • When applied to the NLO chromophore picolinium quinodimethane, the model produced an excellent fit for two-photon resonant data, yielding a static β value of 316 × 10(-30) esu, while adding a second electronic excited state improved short-wavelength descriptions but had minimal impact on the β value.
View Article and Find Full Text PDF

A series of bis(arylidene)cycloalkanone compounds based on cyclobutanone, cyclopentanone, cyclohexanone and cycloheptanone, C4-C7, respectively, with a D-π-A-π-D structure containing the same donor and acceptor but different alicyclic rings was prepared. The effects of alicyclic ring size on the photophysical, photochemical and electrochemical properties of these compounds were investigated systematically. We found that an increase of the number of carbons in the central alicyclic ring leads to changes in geometry, which has significant effects on the conjugation, and photophysical and photochemical properties.

View Article and Find Full Text PDF

The first hyperpolarizability (β) dispersion curve is measured for the first time for an octupolar nonlinear optical (NLO) molecule (crystal violet, CV) and modeled theoretically, yielding an in-depth understanding of the electronic structure and vibronic and solvation effects on such octupolar conjugated systems. Tunable wavelength hyper-Rayleigh scattering (HRS) measurements were performed on this prototypical octupolar molecule in the broad fundamental wavelength range of 620-1580 nm, showing significant shortcomings of the commonly used β dispersion models. Three well-separated β resonances involving the lowest-energy state and several higher excited states are clearly observed, including a significant contribution from a nominally one-photon forbidden transition.

View Article and Find Full Text PDF

A very sensitive experimental setup for accurate wavelength-dependent hyper-Rayleigh scattering (HRS) measurements of the molecular first hyperpolarizability beta in the broad fundamental wavelength range of 600 to 1800 nm is presented. The setup makes use of a stable continuously tunable picosecond optical parametric amplifier with kilohertz repetition rate. To correct for multi-photon fluorescence, a small spectral range around the second harmonic wavelength is detected in parallel using a spectrograph coupled to an intensified charge-coupled device.

View Article and Find Full Text PDF