Publications by authors named "Jochen Abke"

Collagen type-I is a major component of the extracellular matrix of most tissues and it is increasingly utilized for surface engineering of biomaterials to accelerate receptor-mediated cell adhesion. In the present study, coatings with layers of fibrillar type-I collagen were prepared on titanium, titanium alloy, and cobalt alloy to improve initial osteoblast adhesion and implant-tissue integration. To suppress the quick in vivo degradation rate of collagen the deposited layers were covalently immobilized at the metal surfaces as well as chemically cross-linked.

View Article and Find Full Text PDF

It was shown recently that the deposition of thin films of tantalum and tantalum oxide enhanced the long-term biocompatibility of stainless steel biomaterials due to an increase in their corrosion resistance. In this study, we used this tantalum oxide coating as a basis for covalent immobilization of a collagen layer, which should result in a further improvement of implant tissue integration. Because of the high degradation rate of natural collagen in vivo, covalent immobilization as well as carbodiimide induced cross-linking of the protein was performed.

View Article and Find Full Text PDF

Collagen-based scaffolds are appealing products for the repair of cartilage defects using tissue engineering strategies. The present study investigated the species-related differences of collagen scaffolds with and without 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS)-crosslinking. Resistance against collagenase digestion, swelling ratio, amino acid sequence, shrinkage temperature, ultrastructural matrix morphology, crosslinking density and stress-strain characteristics were determined to evaluate the physico-chemical properties of equine- and bovine-collagen-based scaffolds.

View Article and Find Full Text PDF