Publications by authors named "Jochem Wolthaus"

Introduction: This paper describes a method to improve gantry-dependent beam steering for Elekta traveling wave linear accelerators by applying the measured and filtered beam servo corrections to the existing lookup table (LUT). Beam steering has a direct influence on the treatment accuracy by affecting the beam symmetry and position. The presented method provides an improved LUT with respect to the default Elekta method to reduce treatment delivery interruptions.

View Article and Find Full Text PDF

Background: For the development and validation of dynamic treatment modalities and processes on the MR-linac, independent measurements should be performed that validate dose delivery and linac behavior at a high temporal resolution. To achieve this, a detector with both high temporal and spatial resolution is necessary.

Purpose: This study investigates the suitability of a Delta4 Phantom+ MR (Delta4) detector array for time-resolved dosimetry in the 1.

View Article and Find Full Text PDF

Background And Purpose: Patients with cardiac implantable electronic devices (CIED patients) are often ineligible for online magnetic resonance-guided radiotherapy (MRgRT), most likely due to the absence of established guidelines. Existing radiotherapy (RT) and magnetic resonance imaging (MRI) guidelines offer an opportunity to construct MRgRT protocols, promoting equitable access. Our objective was to present such a workflow, share multi-institutional experiences treating CIED patients with MRgRT on a 1.

View Article and Find Full Text PDF

Background And Purpose: During an end-to-end (E2E) test on the online workflow of the MR-linac, the performance of the treatment starting from the acquisition of pre-treatment MRI scans and ending with dose delivery is quantified. In such a test, the geometrical accuracy of the entire workflow is assessed. Ideally, the 3D geometrical accuracy of dose delivery on an MR-linac should be assessed using dosimeters that provide 3D dose distributions.

View Article and Find Full Text PDF

Background And Purpose: Radiotherapy plan verification is generally performed on the reference plan based on the pre-treatment anatomy. However, the introduction of online adaptive treatments demands a new approach, as plans are created daily on different anatomies. The aim of this study was to experimentally validate the accuracy of total doses of multi-fraction plan adaptations in magnetic resonance imaging guided radiotherapy in a phantom study, isolated from the uncertainty of deformable image registration.

View Article and Find Full Text PDF

For commissioning and quality assurance for adaptive workflows on the MR-linac, a dosimeter which can measure time-resolved dose during MR image acquisition is desired. The Blue Physics model 10 scintillation dosimeter is potentially an ideal detector for such measurements. However, some detectors can be influenced by the magnetic field of the MR-linac.

View Article and Find Full Text PDF

Objective: The goal of this consensus expert opinion was to define quality assurance (QA) tests for online magnetic resonance image (MRI) guided radiotherapy (oMRgRT) systems and to define the important medical physics aspects for installation and commissioning of an oMRgRT system.

Materials And Methods: Ten medical physicists and two radiation oncologists experienced in oMRgRT participated in the survey. In the first round of the consensus expert opinion, ideas on QA and commissioning were collected.

View Article and Find Full Text PDF

Purpose: To develop and implement an acceptance procedure for the new Elekta Unity 1.5 T MRI-linac.

Methods: Tests were adopted and, where necessary adapted, from AAPM TG106 and TG142, IEC 60976 and NCS 9 and NCS 22 guidelines.

View Article and Find Full Text PDF

Over the last few years, magnetic resonance image-guided radiotherapy systems have been introduced into the clinic, allowing for daily online plan adaption. While quality assurance (QA) is similar to conventional radiotherapy systems, there is a need to introduce or modify measurement techniques. As yet, there is no consensus guidance on the QA equipment and test requirements for such systems.

View Article and Find Full Text PDF

Introduction: Increased modulation and dynamical delivery of external beam radiotherapy (EBRT), such as volumetric modulated arc therapy (VMAT) with dynamic gantry rotation, continuously variable dose rate (CVDR) and field shapes that change during the beam, place greater demands on the performance of linear accelerators (linac). In this study, the accuracy of the linac beam steering is improved by the application of a new method to determine the gantry-dependent lookup table.

Methods: An improved method of lookup table creation based on service graphing information from the linac is investigated.

View Article and Find Full Text PDF

High impedance coils (HICs) are suitable as a building block of receive arrays for MRI-guided radiotherapy (MRIgRT) as HICs do not require radiation-attenuating capacitors and dense support materials. Recently, we proved the feasibility of using HICs to create a radiation transparent (i.e.

View Article and Find Full Text PDF

With the rapid increase in clinical treatments with MRI-linacs, a consistent, harmonized and sustainable ground for reference dosimetry in MRI-linacs is needed. Specific for reference dosimetry in MRI-linacs is the presence of a strong magnetic field. Therefore, existing Code of Practices (CoPs) are inadequate.

View Article and Find Full Text PDF

Online adaptive radiotherapy using the 1.5 Tesla MR-linac is feasible for SBRT (5 × 7 Gy) of pelvic lymph node oligometastases. The workflow allows full online planning based on daily anatomy.

View Article and Find Full Text PDF

The output of MRI-integrated photon therapy (MRgXT) devices is measured in terms of absorbed dose to water, D . Traditionally this is done with reference type ion chambers calibrated in a beam quality Q without magnetic field. To correct the ion chamber response for the application in the magnetic field, a factor needs to be applied that corrects for both beam quality Q and the presence of the magnetic field B, k .

View Article and Find Full Text PDF

The out-of-field surface dose contribution due to backscattered or ejected electrons, focused by the magnetic field, is evaluated in this work. This electron streaming effect (ESE) can contribute to out-of-field skin doses in orthogonal magnetic resonance guided radiation therapy machines. Using the EGSnrc Monte Carlo package, a phantom is set-up along the central axis of an incident 10 [Formula: see text] 10 cm 7 MV FFF photon beam.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to evaluate the potential skin dose toxicity contribution of spiralling contaminant electrons (SCE) generated in the air in an MR-linac with a 0.35 or 1.5 T magnetic field using the EGSnrc Monte Carlo (MC) code.

View Article and Find Full Text PDF

MRI guided radiotherapy devices are currently in clinical use. Detector responses are affected by the magnetic field and need to be characterized in terms of absorbed dose to water, D , against primary standards under these conditions. The aim of this study was to commission a water calorimeter, accepted as the Dutch national standard for D in MV photons and to validate its claimed standard uncertainty of 0.

View Article and Find Full Text PDF

In 2010, the NCS (Netherlands Commission on Radiation Dosimetry) installed a subcommittee to develop guidelines for quality assurance and control for volumetric modulated arc therapy (VMAT) treatments. The report (published in 2015) has been written by Dutch medical physicists and has therefore, inevitably, a Dutch focus. This paper is a condensed version of these guidelines, the full report in English is freely available from the NCS website www.

View Article and Find Full Text PDF

Respiratory motion causes artifacts in cone-beam (CB) CT images acquired on slow rotating scanners integrated with linear accelerators. Respiration-correlated CBCT has been proposed to correct for the respiratory motion but only a subset of the CB projections is used to reconstruct each frame of the 4D CBCT image and, therefore, adequate image quality requires long acquisition times. In this article, the authors develop an on-the-fly solution to estimate and compensate for the respiratory motion in the reconstruction of a 3D CBCT image from all the CB projections.

View Article and Find Full Text PDF

Purpose: To determine the effect of respiration-induced density variations on the estimated dose delivered to moving structures and, consequently, to evaluate the necessity of using full four-dimensional (4D) treatment plan optimization.

Methods And Materials: In 10 patients with large tumor motion (median, 1.9 cm; range, 1.

View Article and Find Full Text PDF

Purpose: To quantify the localization accuracy and intrafraction stability of lung cancer patients treated with frameless, four-dimensional (4D) cone beam computed tomography (CBCT)-guided stereotactic body radiotherapy (SBRT) and to calculate and validate planning target volume (PTV) margins to account for the residual geometric uncertainties.

Materials And Methods: Sixty-five patients with small peripheral lung tumors were treated with SBRT without a body frame to 54 Gy in three fractions. For each fraction, three 4D-CBCT scans were acquired: before treatment to measure and correct the time-weighted mean tumor position, after correction to validate the correction applied, and after treatment to estimate the intrafraction stability.

View Article and Find Full Text PDF

Respiratory motion causes artifacts in slow-rotating cone-beam (CB) computed tomography (CT) images acquired for example for image guidance of radiotherapy. Respiration-correlated CBCT has been proposed to correct for the respiratory motion, but the use of a subset of the CB projections to reconstruct each frame of the 4D CBCT image limits their quality, thus requiring a longer acquisition time. Another solution is motion-compensated CBCT which consists of reconstructing a single 3D CBCT image at a reference position from all the CB projections by using an estimate of the respiratory motion in the reconstruction algorithm.

View Article and Find Full Text PDF

Purpose: To discuss planning target volumes (PTVs) based on internal target volume (PTVITV), exhale-gated radiotherapy (PTVGating), and a new proposed midposition (PTVMidP; time-weighted mean tumor position) and compare them with the conventional free-breathing CT scan PTV (PTVConv).

Methods And Materials: Respiratory motion induces systematic and random geometric uncertainties. Their contribution to the clinical target volume (CTV)-to-PTV margins differs for each PTV approach.

View Article and Find Full Text PDF

Purpose: Four-dimensional (4D) respiration-correlated imaging techniques can be used to obtain (respiration) artifact-free computed tomography (CT) images of the thorax. Current radiotherapy planning systems, however, do not accommodate 4D-CT data. The purpose of this study was to develop a simple, new concept to incorporate patient-specific motion information, using 4D-CT scans, in the radiotherapy planning process of lung cancer patients to enable smaller error margins.

View Article and Find Full Text PDF

Purpose: With higher radiation dose, higher cure rates have been reported in prostate cancer patients. The extra margin needed to account for prostate motion, however, limits the level of dose escalation, because of the presence of surrounding organs at risk. Knowledge of the precise position of the prostate would allow significant reduction of the treatment field.

View Article and Find Full Text PDF