Hydrogen-deuterium exchange (HDX) has become a pivotal method for investigating the structural and dynamic properties of proteins. The versatility and sensitivity of mass spectrometry (MS) made the technique the ideal companion for HDX, and today HDX-MS is addressing a growing number of applications in both academic research and industrial settings. The prolific generation of experimental data has spurred the concurrent development of numerous computational tools, designed to automate parts of the workflow while employing different strategies to achieve common objectives.
View Article and Find Full Text PDFSecretory preproteins of the Sec pathway are targeted post-translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non-folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further.
View Article and Find Full Text PDFMany life-science techniques and assays rely on selective labeling of biological target structures with commercial fluorophores that have specific yet invariant properties. Consequently, a fluorophore (or dye) is only useful for a limited range of applications, e.g.
View Article and Find Full Text PDFHydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful technique to monitor protein intrinsic dynamics. The technique provides high-resolution information on how protein intrinsic dynamics are altered in response to biological signals, such as ligand binding, oligomerization, or allosteric networks. However, identification, interpretation, and visualization of such events from HDX-MS data sets is challenging as these data sets consist of many individual data points collected across peptides, time points, and experimental conditions.
View Article and Find Full Text PDFType III protein secretion is widespread in Gram-negative pathogens. It comprises the injectisome with a surface-exposed needle and an inner membrane translocase. The translocase contains the SctRSTU export channel enveloped by the export gate subunit SctV that binds chaperone/exported clients and forms a putative ante-chamber.
View Article and Find Full Text PDFThe cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel assemble to form the Sec translocase. How this interaction primes and catalytically activates the translocase remains unclear. We show that priming exploits a nexus of intrinsic dynamics in SecA.
View Article and Find Full Text PDFSingle-molecule fluorescence microscopy studies of bacteria provide unique insights into the mechanisms of cellular processes and protein machineries in ways that are unrivalled by any other technique. With the cost of microscopes dropping and the availability of fully automated microscopes, the volume of microscopy data produced has increased tremendously. These developments have moved the bottleneck of throughput from image acquisition and sample preparation to data analysis.
View Article and Find Full Text PDFWhile buffer cocktails remain the most commonly used method for photostabilization and photoswitching of fluorescent markers, intramolecular triplet-state quenchers emerge as an alternative strategy to impart fluorophores with 'self-healing' or even functional properties such as photoswitching. In this contribution, we evaluated combinations of both approaches and show that inter- and intramolecular triplet-state quenching processes compete with each other. We find that although the rate of triplet-state quenching is additive, the photostability is limited by the faster pathway.
View Article and Find Full Text PDFIntramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with 'self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids.
View Article and Find Full Text PDFFluorescence is a versatile tool for spectroscopic investigations and imaging of dynamic processes and structures across various scientific disciplines. The photophysical performance, that is, signal stability and signal duration, of the employed fluorophores is a major limiting factor. In this Letter, we propose a general concept to covalently link molecules, which are known for their positive effect in photostabilization, to form a combined photostabilizer with new properties.
View Article and Find Full Text PDFIntensity fluctuations between an ON-state and an OFF-state, also called blinking, are common to all luminescent objects when studied at the level of individuals. We studied blinking of three dyes from a homologous series (Cy3, Cy5, Cy7). The underlying radical anion states were induced by removing oxidants (i.
View Article and Find Full Text PDF