Publications by authors named "Jocelyne Caparros"

Marine heterotrophic prokaryotes (HP) play a key role in organic matter processing in the ocean; however, the view of HP as dissolved organic matter (DOM) sources remains underexplored. In this study, we quantified and optically characterized the DOM produced by two single marine bacterial strains. We then tested the availability of these DOM sources to in situ Mediterranean Sea HP communities.

View Article and Find Full Text PDF
Article Synopsis
  • The deep convection event in the NW Mediterranean Sea (2010-2011) caused significant mixing of prokaryotic communities across a depth of 0-1500 m, leading to a dominance of typical surface Bacteria.
  • Statistical analyses showed that physical turbulence alone couldn't fully explain the changes in community distribution; it worked alongside factors like organic matter to shape these dynamics.
  • Post-event, there was a noticeable boost in prokaryotic abundance and production, but a decrease in certain enzymatic activities, indicating an enhanced turnover of organic matter and a rapid recovery of community structure just days after the event.
View Article and Find Full Text PDF

Spatial increases and temporal shifts in outbreaks of gelatinous plankton have been observed over the past several decades in many estuarine and coastal ecosystems. The effects of these blooms on marine ecosystem functioning and particularly on the dynamics of the heterotrophic bacteria are still unclear. The response of the bacterial community from a Mediterranean coastal lagoon to the addition of dissolved organic matter (DOM) from the jellyfish Aurelia aurita, corresponding to an enrichment of dissolved organic carbon (DOC) by 1.

View Article and Find Full Text PDF

We investigated the abundance and activity of SAR11 on a monthly time scale between January 2008 and October 2008 in the oligotrophic NW Mediterranean Sea. Applying MICRO-CARD-FISH, we observed that SAR11 had a large contribution to bulk abundance (37 ± 6% of DAPI-stained cells) and to bulk bacterial heterotrophic production (BHP), as estimated from leucine incorporation (55 ± 15% of DAPI-cells assimilating leucine) in surface waters (5 m) throughout the study period. SAR11 contributed also substantially to the assimilation of glucose, ATP, and a combination of amino acids (44 ± 17%, 37 ± 14%, and 43 ± 12% of DAPI cells assimilating these compounds, respectively), organic compounds that provide either single or combined sources of C, P, and N.

View Article and Find Full Text PDF

We investigated the impact of water masses originating from freshwater input on bacterial heterotrophic metabolism and community structure at an offshore site in the oligotrophic NW Mediterranean Sea in 2007 and 2008. By combining 16S rRNA gene clone libraries and MICRO-CARD-FISH we determined the dominant operational taxonomic units (OTU) and their contribution to bulk abundance and activity in the presence of buoyant water masses characterized by lower salinity (LSW, < 37.9) and compared these with the winter and spring phytoplankton blooms.

View Article and Find Full Text PDF