A quaternary ammonium-based drug-linker has been developed to expand the scope of antibody-drug conjugate (ADC) payloads to include tertiary amines, a functional group commonly present in biologically active compounds. The linker strategy was exemplified with a β-glucuronidase-cleavable auristatin E construct. The drug-linker was found to efficiently release free auristatin E (AE) in the presence of β-glucuronidase and provide ADCs that were highly stable in plasma.
View Article and Find Full Text PDFAntibody-drug conjugates (ADC) comprise targeting antibodies armed with potent small-molecule payloads. ADCs demonstrate specific cell killing in clinic, but the basis of their antitumor activity is not fully understood. In this study, we investigated the degree to which payload release predicts ADC activity in vitro and in vivo ADCs were generated to target different receptors on the anaplastic large cell lymphoma line L-82, but delivered the same cytotoxic payload (monomethyl auristatin E, MMAE), and we found that the intracellular concentration of released MMAE correlated with in vitro ADC-mediated cytotoxicity independent of target expression or drug:antibody ratios.
View Article and Find Full Text PDFThe in vitro potency of antibody-drug conjugates (ADCs) increases with the drug-to-antibody ratio (DAR); however, ADC plasma clearance also increases with DAR, reducing exposure and in vivo efficacy. Here we show that accelerated clearance arises from ADC hydrophobicity, which can be modulated through drug-linker design. We exemplify this using hydrophilic auristatin drug linkers and PEGylated ADCs that yield uniform, high-DAR ADCs with superior in vivo performance.
View Article and Find Full Text PDFMany methods have been described for the conjugation of drugs to monoclonal antibodies. The presence of a discrete number of readily reducible disulfides in the common IgG subtypes presents a convenient opportunity for conjugation to cysteine residues with thiol-reactive drug-linkers. Such conjugates can be prepared by a straightforward two-step reaction scheme involving the reduction of the antibody disulfides to the desired number of average thiols per antibody, followed by addition of the drug-linker, ideally with a maleimido functionality for rapid, selective reaction.
View Article and Find Full Text PDF