New Zealand ephemeral wetlands are ecologically important, containing up to 12% of threatened native plant species and frequently exhibiting conspicuous cyanobacterial growth. In such environments, cyanobacteria and associated heterotrophs can influence primary production and nutrient cycling. Wetland communities, including bacteria, can be altered by increased nitrate and phosphate due to agricultural practices.
View Article and Find Full Text PDFIn oxygenic photosynthesis, the D1 protein of Photosystem II is the primary target of photodamage and environmental stress can accelerate this process. The cyanobacterial response to stress includes transcriptional regulation of genes encoding D1, including low-oxygen-induction of psbA1 encoding the D1´ protein in Synechocystis sp. PCC 6803.
View Article and Find Full Text PDFSynechocystis sp. strain PCC 6803 grows photoautotrophically across a broad pH range, but wild-type cultures reach a higher density at elevated pH; however, photoheterotrophic growth is similar at high and neutral pH. A number of PSII mutants each lacking at least one lumenal extrinsic protein, and carrying a second PSII lumenal mutation, are able to grow photoautotrophically in BG-11 medium at pH 10.
View Article and Find Full Text PDFDevelopment of the symbiotic association in the bipartite lichen Pseudocyphellaria crocata was investigated by characterizing two regions of the thallus. Thallus organization was examined using microscopy. A HIP1-based differential display technique was modified for use on Nostoc strains, including lichenized strains.
View Article and Find Full Text PDF