The COVID-19 pandemic has created a global health crisis, with challenges arising from the ongoing evolution of the SARS-CoV-2 virus, the emergence of new strains, and the long-term effects of COVID-19. Aiming to overcome the development of viral resistance, our study here focused on developing broad-spectrum pan-coronavirus antiviral therapies by targeting host protein quality control mechanisms essential for viral replication. Screening an in-house compound library led to the discovery of three candidate compounds targeting cellular proteostasis.
View Article and Find Full Text PDFA small molecule screen identified several cardiotonic steroids (digitoxin and ouabain) and the ionophore monensin as potent inhibitors of HCoV-229E, HCoV-OC43, and SARS-CoV-2 replication with ECs in the low nM range. Subsequent tests confirmed antiviral activity in primary cell models including human nasal epithelial cells and lung organoids. Addition of digitoxin, ouabain, or monensin strongly reduced viral gene expression as measured by both viral protein and RNA accumulation.
View Article and Find Full Text PDF