To accelerate the discovery of novel drug candidates for Coronavirus Disease 2019 (COVID-19) therapeutics, we reported a series of machine learning (ML)-based models to accurately predict the anti-SARS-CoV-2 activities of screening compounds. We explored 6 popular ML algorithms in combination with 15 molecular descriptors for molecular structures from 9 screening assays in the COVID-19 OpenData Portal hosted by NCATS. As a result, the models constructed by k-nearest neighbors (KNN) using the molecular descriptor GAFF+RDKit achieved the best overall performance with the highest average accuracy of 0.
View Article and Find Full Text PDF