Publications by authors named "Jocelyn M Darby"

The hybridoma method for production of monoclonal antibodies has been a cornerstone of biomedical research for several decades. Here we convert the monoclonal antibody sequence from mouse-derived hybridomas into a "devilized" recombinant antibody with devil IgG heavy chain and IgK light chain. The chimeric recombinant antibody can be used in functional assays, immunotherapy, and to improve understanding of antibodies and Fc receptors in Tasmanian devils.

View Article and Find Full Text PDF

The devil facial tumour disease (DFTD) has led to a massive decline in the wild Tasmanian devil () population. The disease is caused by two independent devil facial tumours (DFT1 and DFT2). These transmissible cancers have a mortality rate of nearly 100 %.

View Article and Find Full Text PDF

Purpose: Downregulation of MHC class I (MHC-I) is a common immune evasion strategy of many cancers. Similarly, two allogeneic clonal transmissible cancers have killed thousands of wild Tasmanian devils (Sarcophilus harrisii) and also modulate MHC-I expression to evade anti-cancer and allograft responses. IFNG treatment restores MHC-I expression on devil facial tumor (DFT) cells but is insufficient to control tumor growth.

View Article and Find Full Text PDF

This protocol provides a step-by-step method to create recombinant fluorescent fusion proteins that can be secreted from mammalian cell lines. This builds on many other recombinant protein and fluorescent protein techniques, but is among the first to harness fluorescent fusion proteins secreted directly into cell culture supernatant. This opens new possibilities that are not achievable with proteins produced in bacteria or yeast, such as direct use of the fluorescent protein-secreting cells in live co-culture assays.

View Article and Find Full Text PDF

Immune checkpoint immunotherapy is a pillar of human oncology treatment with potential for non-human species. The first checkpoint immunotherapy approved for human cancers targeted the CTLA4 protein. CTLA4 can inhibit T cell activation by capturing and internalizing CD80 and CD86 from antigen presenting cells, a process called trans-endocytosis.

View Article and Find Full Text PDF

Around 40% of humans and Tasmanian devils () develop cancer in their lifetime, compared to less than 10% for most species. In addition, devils are affected by two of the three known transmissible cancers in mammals. Immune checkpoint immunotherapy has transformed human medicine, but a lack of species-specific reagents has limited checkpoint immunology in most species.

View Article and Find Full Text PDF

The survival of the Tasmanian devil (Sarcophilus harrisii) is threatened by devil facial tumour disease (DFTD). This transmissible cancer is usually fatal, and no successful treatments have been developed. In human studies, the small immunomodulatory molecule imiquimod is a successful immunotherapy, activating anti-tumour immunity via stimulation of toll-like receptor-7 (TLR7) signaling pathways.

View Article and Find Full Text PDF

Unlabelled: Early identification of tumor responses to treatment is crucial for devising more effective and safer cancer treatments. No widely applicable, noninvasive method currently exists for specifically detecting tumor cell death after cytotoxic treatment and thus for predicting treatment outcomes.

Methods: We have further characterized the targeting of the murine monoclonal antibody DAB4 specifically to dead tumor cells in vitro, in vivo, and in clinical samples.

View Article and Find Full Text PDF

Background: The lupus-associated (La)-specific murine monoclonal antibody DAB4 (APOMAB®) specifically binds dead cancer cells. Using DAB4, we examined La expression in human lung cancer samples to assess its suitability as a cancer-selective therapeutic target. We evaluated the safety and effectiveness of radioimmunotherapy (RIT) using DAB4 radiolabeled with Lutetium-177 (177Lu) in the murine Lewis Lung (LL2) carcinoma model, and determined whether combining RIT with DNA-damaging cisplatin-based chemotherapy, a PARP inhibitor (PARPi), or both alters treatment responses.

View Article and Find Full Text PDF

Background: Mucositis is a toxic side effect of anti-cancer treatments and is a major focus in cancer research. Pro-inflammatory cytokines have previously been implicated in the pathophysiology of chemotherapy-induced gastrointestinal mucositis. However, whether they play a key role in the development of radiotherapy-induced gastrointestinal mucositis is still unknown.

View Article and Find Full Text PDF

Introduction: Antibodies covalently conjugated with chelators such as 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) are required for radioimmunoscintigraphy and radioimmunotherapy, which are of growing importance in cancer medicine.

Method: Here, we report a suite of simple methods that provide a preclinical assessment package for evaluating the effects of DOTA conjugation on the in vitro and in vivo performance of monoclonal antibodies. We exemplify the use of these methods by investigating the effects of DOTA conjugation on the biochemical properties of the DAB4 clone of the La/SSB-specific murine monoclonal autoantibody, APOMAB, which is a novel malignant cell death ligand.

View Article and Find Full Text PDF

Background: Antineoplastic therapy may impair the survival of malignant cells to produce cell death. Consequently, direct measurement of tumor cell death in vivo is a highly desirable component of therapy response monitoring. We have previously shown that APOMAB representing the DAB4 clone of a La/SSB-specific murine monoclonal autoantibody is a malignant cell-death ligand, which accumulates preferentially in tumors in an antigen-specific and dose-dependent manner after DNA-damaging chemotherapy.

View Article and Find Full Text PDF

Background: To date, inefficient delivery of therapeutic doses of radionuclides to solid tumors limits the clinical utility of radioimmunotherapy. We aim to test the therapeutic utility of Yttrium-90 ((90)Y)-radio-conjugates of a monoclonal antibody, which we showed previously to bind specifically to the abundant intracellular La ribonucleoprotein revealed in dead tumor cells after DNA-damaging treatment.

Methodology/principal Findings: Immunoconjugates of the DAB4 clone of the La-specific monoclonal antibody, APOMAB, were prepared using the metal chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and then radiolabeled with (90)Y.

View Article and Find Full Text PDF

Purpose: To investigate the potential of the La-specific monoclonal antibody (mAb) 3B9 as an in vivo tumor-targeting agent.

Experimental Design: The murine EL4 lymphoma cell line was used for in vitro studies and the EL4 model in which apoptosis was induced with cyclophosphamide and etoposide was used for in vivo studies. In vitro studies compared 3B9 binding in the EL4 cell with that in its counterpart primary cell type of the thymocyte.

View Article and Find Full Text PDF

Purpose: To evaluate the La autoantigen as a target for specific monoclonal antibody (mAb) binding in dead cancer cells after use of DNA-damaging chemotherapy.

Experimental Design: In vitro studies of La-specific 3B9 mAb binding to malignant and normal primary cells with and without cytotoxic drug treatment were done using immunoblotting and flow cytometry. Chromatin-binding studies and immunofluorescence detection of gammaH2AX as a marker of DNA double-stranded breaks together with 3B9 binding assays were done to measure DNA damage responses.

View Article and Find Full Text PDF

Twenty-six axenic isolates of Giardia intestinalis, established in Mexico City over an 11-year period from symptomatic and asymptomatic individuals with acute or chronic infections, were typed genetically. A segment of the glutamate dehydrogenase gene was amplified by PCR and examined by restriction analysis using BspH1 and ApaI to determine the major genetic assemblages to which the isolates belonged. This was coupled with the amplification and analysis of segments of variant-specific surface protein genes to determine genetic subgroupings.

View Article and Find Full Text PDF

A sixth locus (vsp417-6) belonging to the vsp417 gene subfamily, a subset of the family of genes that encodes 'variant-specific' surface proteins (VSP) in Giardia, is described. The sequence of vsp417-6(A-I), the ortholog representing the vsp417-6 locus in isolates of the type A-I (Assemblage A, Group I) genotype of Giardia intestinalis, was determined from a cloned 5.5-kb Hind III fragment of genomic DNA derived from isolate Ad-1/C1.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session48eqo5avhalfep0an4kt5tnu2disd71n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once