Production of embryos with high developmental competence by somatic cell nuclear transfer (scNT) is far less efficient than for in vitro fertilized (IVF) embryos, likely due to an accumulation of errors in genome reprogramming that results in aberrant expression of RNA transcripts, including messenger RNAs (mRNA) and, possibly, microRNAs (miRNA). Thus, our objectives were to use RNAseq to determine the dynamics of mRNA expression in early developing scNT and IVF embryos in the context of the maternal-to-embryonic transition (MET) and to correlate apparent transcriptional dysregulation in cloned embryos with miRNA expression profiles. Comparisons between scNT and IVF embryos indicated large scale transcriptome differences, which were most evident at the 8-cell and morula stages for genes associated with biological functions critical for the MET.
View Article and Find Full Text PDFIn mammals, small non-coding RNAs (sncRNAs) have been reported to be important during early embryo development. However, a comprehensive assessment of the inventory of sncRNAs during the maternal-to-zygotic transition (MZT) has not been performed in an animal model that better represents the sncRNA biogenesis pathway in human oocytes and embryos. The objective of this study was to examine dynamic changes in expression of sncRNAs during the MZT in bovine embryos produced by in vitro fertilization (IVF), which occurs at the 8-cell stage.
View Article and Find Full Text PDFAcross eukaryotes, mitochondria exhibit staggering diversity in genomic architecture, including the repeated evolution of multichromosomal structures. Unlike in the nucleus, where mitosis and meiosis ensure faithful transmission of chromosomes, the mechanisms of inheritance in fragmented mitochondrial genomes remain mysterious. Multichromosomal mitochondrial genomes have recently been found in multiple species of flowering plants, including Silene noctiflora, which harbors an unusually large and complex mitochondrial genome with more than 50 circular-mapping chromosomes totaling ∼7 Mb in size.
View Article and Find Full Text PDF