Physiological variability in pancreatic cell type gene regulation and the impact on diabetes risk is poorly understood. In this study we mapped gene regulation in pancreatic cell types using single cell multiomic (joint RNA-seq and ATAC-seq) profiling in 28 non-diabetic donors in combination with single cell data from 35 non-diabetic donors in the Human Pancreas Analysis Program. We identified widespread associations with age, sex, BMI, and HbA1c, where gene regulatory responses were highly cell type- and phenotype-specific.
View Article and Find Full Text PDFPopulation-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid.
View Article and Find Full Text PDFComprehensive molecular and cellular phenotyping of human islets can enable deep mechanistic insights for diabetes research. We established the Human Islet Data Analysis and Sharing (HI-DAS) consortium to advance goals in accessibility, usability, and integration of data from human islets isolated from donors with and without diabetes at the Alberta Diabetes Institute (ADI) IsletCore. Here we introduce HumanIslets.
View Article and Find Full Text PDFUnlabelled: Population level variation and molecular mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized despite ramifications for personalized nutrition. Here, we define prototypical insulin secretion dynamics in response to the three macronutrients in islets from 140 cadaveric donors, including those diagnosed with type 2 diabetes. While islets from the majority of donors exhibited the expected relative response magnitudes, with glucose being highest, amino acid moderate, and fatty acid small, 9% of islets stimulated with amino acid and 8% of islets stimulated with fatty acids had larger responses compared with high glucose.
View Article and Find Full Text PDFAims/hypothesis: Genome-wide studies have uncovered multiple independent signals at the RREB1 locus associated with altered type 2 diabetes risk and related glycaemic traits. However, little is known about the function of the zinc finger transcription factor Ras-responsive element binding protein 1 (RREB1) in glucose homeostasis or how changes in its expression and/or function influence diabetes risk.
Methods: A zebrafish model lacking rreb1a and rreb1b was used to study the effect of RREB1 loss in vivo.
Identification of the genes and processes mediating genetic association signals for complex diseases represents a major challenge. As many of the genetic signals for type 2 diabetes (T2D) exert their effects through pancreatic islet-cell dysfunction, we performed a genome-wide pooled CRISPR loss-of-function screen in a human pancreatic beta cell line. We assessed the regulation of insulin content as a disease-relevant readout of beta cell function and identified 580 genes influencing this phenotype.
View Article and Find Full Text PDFBackground: Tetraspanin-7 (Tspan7) is an islet autoantigen involved in autoimmune type 1 diabetes and known to regulate β-cell L-type Ca channel activity. However, the role of Tspan7 in pancreatic β-cell function is not yet fully understood.
Methods: Histological analyses were conducted using immunostaining.
Pancreatic islet beta cells are essential for maintaining glucose homeostasis. To understand the impact of aging on beta cells, we performed meta-analysis of single-cell RNA sequencing datasets, transcription factor (TF) regulon analysis, high-resolution confocal microscopy, and measured insulin secretion from nondiabetic donors spanning most of the human life span. This revealed the range of molecular and functional changes that occur during beta cell aging, including the transcriptional deregulation that associates with cellular immaturity and reorganization of beta cell TF networks, increased gene transcription rates, and reduced glucose-stimulated insulin release.
View Article and Find Full Text PDFDesignated a pandemic in March 2020, the spread of severe acute respiratory syndrome virus 2 (SARS-CoV2), the virus responsible for coronavirus disease 2019 (COVID-19), led to new guidelines and restrictions being implemented for individuals, businesses, and societies in efforts to limit the impacts of COVID-19 on personal health and healthcare systems. Here we report the impacts of the COVID-19 pandemic on pancreas processing and islet isolation/distribution outcomes at the Alberta Diabetes Institute IsletCore, a facility specializing in the processing and distribution of human pancreatic islets for research. While the number of organs processed was significantly reduced, organ quality and the function of cellular outputs were minimally impacted during the pandemic when compared to an equivalent period immediately prior.
View Article and Find Full Text PDFThe mammalian circadian clock drives daily oscillations in physiology and behavior through an autoregulatory transcription feedback loop present in central and peripheral cells. Ablation of the core clock within the endocrine pancreas of adult animals impairs the transcription and splicing of genes involved in hormone exocytosis and causes hypoinsulinemic diabetes. Here, we developed a genetically sensitized small-molecule screen to identify druggable proteins and mechanistic pathways involved in circadian β-cell failure.
View Article and Find Full Text PDFIn diabetes, glucagon secretion from pancreatic α cells is dysregulated. The underlying mechanisms, and whether dysfunction occurs uniformly among cells, remain unclear. We examined α cells from human donors and mice using electrophysiological, transcriptomic, and computational approaches.
View Article and Find Full Text PDFThe objective of this study is to optimize the cryopreservation of dissociated islet cells and obtain functional cells that can be used in single-cell transcriptome studies on the pathology and treatment of diabetes. Using an iterative graded freezing approach we obtained viable cells after cooling in 10% dimethyl sulfoxide and 6% hydroxyethyl starch at 1°C/min to -40°C, storage in liquid nitrogen, rapid thaw, and removal of cryoprotectants by serial dilution. The expression of epithelial cell adhesion molecule declined immediately after thaw, but recovered after overnight incubation, while that of an endocrine cell marker (HPi2) remained high after cryopreservation.
View Article and Find Full Text PDFSUMOylation reduces oxidative stress and preserves islet mass at the expense of robust insulin secretion. To investigate a role for the deSUMOylating enzyme sentrin-specific protease 1 (SENP1) following metabolic stress, we put pancreas/gut-specific SENP1 knockout (pSENP1-KO) mice on a high-fat diet (HFD). Male pSENP1-KO mice were more glucose intolerant following HFD than littermate controls but only in response to oral glucose.
View Article and Find Full Text PDFMost signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-types required for functional inference are absent from large-scale resources. Here we explore the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using data from 420 donors.
View Article and Find Full Text PDFThe circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alternative splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic β cells that are perturbed in and β-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant β cells, including transcripts encoding () and ().
View Article and Find Full Text PDFVitamin-D-binding protein (DBP) or group-specific component of serum (GC-globulin) carries vitamin D metabolites from the circulation to target tissues. DBP is highly localized to the liver and pancreatic α cells. Although DBP serum levels, gene polymorphisms, and autoantigens have all been associated with diabetes risk, the underlying mechanisms remain unknown.
View Article and Find Full Text PDFPancreatic islet insulin secretion is amplified by both metabolic and receptor-mediated signaling pathways. The incretin-mimetic and DPPIV inhibitor anti-diabetic drugs increase insulin secretion, but in humans this can be variable both in vitro and in vivo. We examined the correlation of GLP-1 induced insulin secretion from human islets with key donor characteristics, glucose-responsiveness, and the ability of glucose to augment exocytosis in β-cells.
View Article and Find Full Text PDFGlucagon-like peptide-1 receptor (GLP1R) agonists and dipeptidyl peptidase 4 inhibitors are widely prescribed diabetes drugs due to their ability to stimulate insulin secretion from remaining β cells and to reduce caloric intake. Unfortunately, they fail to increase human β cell proliferation. Small-molecule inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) are able to induce adult human β cell proliferation, but rates are modest (~2%), and their specificity to β cells is limited.
View Article and Find Full Text PDFImpaired insulin secretion in type 2 diabetes (T2D) is linked to reduced insulin granule docking, disorganization of the exocytotic site, and an impaired glucose-dependent facilitation of insulin exocytosis. We show in β-cells from 80 human donors that the glucose-dependent amplification of exocytosis is disrupted in T2D. Spatial analyses of granule fusion, visualized by total internal reflection fluorescence (TIRF) microscopy in 24 of these donors, demonstrate that these are non-random across the surface of β-cells from donors with no diabetes (ND).
View Article and Find Full Text PDFThe molecular mechanisms underpinning susceptibility loci for type 2 diabetes (T2D) remain poorly understood. Coding variants in peptidylglycine α-amidating monooxygenase (PAM) are associated with both T2D risk and insulinogenic index. Here, we demonstrate that the T2D risk alleles impact negatively on overall PAM activity via defects in expression and catalytic function.
View Article and Find Full Text PDFInsulin exocytosis is regulated by ion channels that control excitability and Ca influx. Channels also play an increasingly appreciated role in microdomain structure. In this study, we examine the mechanism by which the voltage-dependent K (Kv) channel Kv2.
View Article and Find Full Text PDF