Publications by authors named "Jocelyn Achard"

Quantum sensors using solid state qubits have demonstrated outstanding sensitivity, beyond that possible using classical devices. In particular, those based on colour centres in diamond have demonstrated high sensitivity to magnetic field through exploiting the field-dependent emission of fluorescence under coherent control using microwaves. Given the highly biocompatible nature of diamond, sensing from biological samples is a key interdisciplinary application.

View Article and Find Full Text PDF

The ability to perform noninvasive and non-contact measurements of electric signals produced by action potentials is essential in biomedicine. A key method to do this is to remotely sense signals by the magnetic field they induce. Existing methods for magnetic field sensing of mammalian tissue, used in techniques such as magnetoencephalography of the brain, require cryogenically cooled superconducting detectors.

View Article and Find Full Text PDF

In this Letter, we demonstrate initialization and readout of nuclear spins via a negatively charged silicon-vacancy (SiV) electron spin qubit. Under Hartmann-Hahn conditions the electron spin polarization is coherently transferred to the nuclear spin. The readout of the nuclear polarization is observed via the fluorescence of the SiV.

View Article and Find Full Text PDF

A low-dislocation diamond is obtained by homoepitaxial chemical vapor deposition on a standard moderate-quality substrate hollowed out by a large square hole. Dislocations are found to propagate vertically and horizontally from the substrate and to terminate at the top surface or at the sides of the hole, thus leaving the central part with a strongly reduced dislocation density.

View Article and Find Full Text PDF

As quantum mechanics ventures into the world of applications and engineering, materials science faces the necessity to design matter to quantum grade purity. For such materials, quantum effects define their physical behaviour and open completely new (quantum) perspectives for applications. Carbon-based materials are particularly good examples, highlighted by the fascinating quantum properties of, for example, nanotubes or graphene.

View Article and Find Full Text PDF