Publications by authors named "Jocelyn A McDonald"

Ribosome biogenesis is critical for the proper production of proteins in cells and has emerged as a regulator of cell invasion and migration in development and in cancer. The border cells form a collective that invades and migrates through the surrounding tissue during oogenesis. We previously found that a significant number of ribosome biogenesis genes are differentially expressed from early to late migration stages.

View Article and Find Full Text PDF

Collective cell migration is integral to many developmental and disease processes. Previously, we discovered that protein phosphatase 1 (Pp1) promotes border cell collective migration in the Drosophila ovary. We now report that the Pp1 phosphatase regulatory subunit dPPP1R15 is a critical regulator of border cell migration.

View Article and Find Full Text PDF

Background: Collective cell migration underlies many essential processes, including sculpting organs during embryogenesis, wound healing in the adult, and metastasis of cancer cells. At mid-oogenesis, Drosophila border cells undergo collective migration. Border cells round up into a small group at the pre-migration stage, detach from the epithelium and undergo a dynamic and highly regulated migration at the mid-migration stage, and stop at the oocyte, their final destination, at the post-migration stage.

View Article and Find Full Text PDF

Migrating cell collectives navigate complex tissue environments both during normal development and in pathological contexts such as tumor invasion and metastasis. To do this, cells in collectives must stay together but also communicate information across the group. The cadherin superfamily of proteins mediates junctional adhesions between cells, but also serve many essential functions in collective cell migration.

View Article and Find Full Text PDF

Having intact epithelial tissues is critical for embryonic development and adult homeostasis. How epithelia respond to damaging insults or tissue growth while still maintaining intercellular connections and barrier integrity during development is poorly understood. The conserved small GTPase Rap1 is critical for establishing cell polarity and regulating cadherin-catenin cell junctions.

View Article and Find Full Text PDF

Collective cell movements contribute to tissue development and repair and spread metastatic disease. In epithelia, cohesive cell movements require reorganization of adherens junctions and the actomyosin cytoskeleton. However, the mechanisms that coordinate cell-cell adhesion and cytoskeletal remodeling during collective cell migration in vivo are unclear.

View Article and Find Full Text PDF

Drosophila border cells have emerged as a genetically tractable model to investigate dynamic collective cell migration within the context of a developing organ. Studies of live border cell cluster migration have revealed similarities with other migrating collectives, including formation and restriction of cellular protrusions to the front of the cluster, supracellular actomyosin contractility of the entire collective, and intra-collective cell motility. Here, we describe protocols to prepare ex vivo cultures of stage 9 egg chambers followed by live time-lapse imaging of fluorescently labeled border cells to image dynamic cell behaviors.

View Article and Find Full Text PDF

Migrating cell collectives are key to embryonic development but also contribute to invasion and metastasis of a variety of cancers. Cell collectives can invade deep into tissues, leading to tumor progression and resistance to therapies. Collective cell invasion is also observed in the lethal brain tumor glioblastoma (GBM), which infiltrates the surrounding brain parenchyma leading to tumor growth and poor patient outcomes.

View Article and Find Full Text PDF

The origins of the posterior lobe, a recently evolved structure in some species of , have become clearer.

View Article and Find Full Text PDF

Collective cell migration is central to many developmental and pathological processes. However, the mechanisms that keep cell collectives together and coordinate movement of multiple cells are poorly understood. Using the border cell migration model, we find that Protein phosphatase 1 (Pp1) activity controls collective cell cohesion and migration.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most prevalent primary malignant brain tumor and is associated with extensive tumor cell infiltration into the adjacent brain parenchyma. However, there are limited targeted therapies that address this disease hallmark. While the invasive capacity of self-renewing cancer stem cells (CSCs) and their non-CSC progeny has been investigated, the mode(s) of migration used by CSCs during invasion is currently unknown.

View Article and Find Full Text PDF

During development and in cancer, cells often move together in small to large collectives. To move as a unit, cells within collectives need to stay coupled together and coordinate their motility. How cell collectives remain interconnected and migratory, especially when moving through in vivo environments, is not well understood.

View Article and Find Full Text PDF

The actomyosin cytoskeleton, a key stress-producing unit in epithelial cells, oscillates spontaneously in a wide variety of systems. Although much of the signal cascade regulating myosin activity has been characterized, the origin of such oscillatory behavior is still unclear. Here, we show that basal myosin II oscillation in Drosophila ovarian epithelium is not controlled by actomyosin cortical tension, but instead relies on a biochemical oscillator involving ROCK and myosin phosphatase.

View Article and Find Full Text PDF

The pattern of the Drosophila melanogaster adult wing is heavily influenced by the expression of proteins that dictate cell fate decisions between intervein and vein during development. dSRF (Blistered) expression in specific regions of the larval wing disc promotes intervein cell fate, whereas EGFR activity promotes vein cell fate. Here, we report that the chromatin-organizing protein CAP-D3 acts to dampen dSRF levels at the anterior/posterior boundary in the larval wing disc, promoting differentiation of cells into the anterior crossvein.

View Article and Find Full Text PDF

Tissues in developing embryos exhibit complex and dynamic rearrangements that shape forming organs, limbs, and body axes. Directed migration, mediolateral intercalation, lumen formation, and other rearrangements influence the topology and topography of developing tissues. These collective cell behaviors are distinct phenomena but all involve the fine-grained control of cell polarity.

View Article and Find Full Text PDF

Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood.

View Article and Find Full Text PDF

The partitioning defective gene 1 (Par-1)/microtubule affinity-regulating kinase (MARK) family of serine-threonine kinases have diverse cellular roles. Primary among these roles are the establishment and maintenance of cell polarity and the promotion of microtubule dynamics. Par-1/MARK kinases also regulate a growing number of cellular functions via noncanonical protein targets.

View Article and Find Full Text PDF

Background: Cell motility is essential for embryonic development and physiological processes such as the immune response, but also contributes to pathological conditions such as tumor progression and inflammation. However, our understanding of the mechanisms underlying migratory processes is incomplete. Drosophila border cells provide a powerful genetic model to identify the roles of genes that contribute to cell migration.

View Article and Find Full Text PDF

The dsRNA binding protein (dsRBP) PACT was first described as an activator of the dsRNA dependent protein kinase PKR in response to stress signals.  Additionally, it has been identified as a component of the small RNA processing pathway.  A role for PACT in this pathway represents an important interplay between two modes of post-transcriptional gene regulation.

View Article and Find Full Text PDF

Cells often move as collective groups during normal embryonic development and wound healing, although the mechanisms governing this type of migration are poorly understood. The Drosophila melanogaster border cells migrate as a cluster during late oogenesis and serve as a powerful in vivo genetic model for collective cell migration. To discover new genes that participate in border cell migration, 64 out of 66 genes that encode PDZ domain-containing proteins were systematically targeted by in vivo RNAi knockdown.

View Article and Find Full Text PDF

Background: Localized actomyosin contraction couples with actin polymerization and cell-matrix adhesion to regulate cell protrusions and retract trailing edges of migrating cells. Although many cells migrate in collective groups during tissue morphogenesis, mechanisms that coordinate actomyosin dynamics in collective cell migration are poorly understood. Migration of Drosophila border cells, a genetically tractable model for collective cell migration, requires nonmuscle myosin-II (Myo-II).

View Article and Find Full Text PDF

Background: Many cells that migrate during normal embryonic development or in metastatic cancer first detach from an epithelium. However, this step is often difficult to observe directly in vivo, and the mechanisms controlling the ability of cells to leave the epithelium are poorly understood. In addition, once cells detach, they must assume a migratory phenotype, involving changes in cytoskeletal and signaling dynamics.

View Article and Find Full Text PDF

Cell migration is an important feature of embryonic development as well as tumor metastasis. Border cells in the Drosophila ovary have emerged as a useful in vivo model for uncovering the molecular mechanisms that control many aspects of cell migration including guidance. It was previously shown that two receptor tyrosine kinases, epidermal growth factor receptor (EGFR) and PDGF- and VEGF-related receptor (PVR), together contribute to border cell migration.

View Article and Find Full Text PDF

There are a number of reasons to use Drosophila as a model system to study cell migration. First and foremost is the availability of an arsenal of powerful genetic techniques that can be deployed, permitting the study of cell migration in vivo, in the context of the entire organism. This is especially important for the study of a complex behavior that can be dramatically affected by small changes in environmental conditions.

View Article and Find Full Text PDF

We are interested in the mechanisms that generate neuronal diversity within the Drosophila central nervous system (CNS), and in particular in the development of a single identified motoneuron called RP2. Expression of the homeodomain transcription factor Even-skipped (Eve) is required for RP2 to establish proper connectivity with its muscle target. Here we investigate the mechanisms by which eve is specifically expressed within the RP2 motoneuron lineage.

View Article and Find Full Text PDF