Publications by authors named "Joby Joseph"

Article Synopsis
  • The plasmonic integrated semiconductor enhances light-matter interactions for solar energy harvesting by offering a broader operational spectral range than traditional semiconductors, but it typically has limited efficiency at specific wavelengths.
  • The proposed Au-TiO Schottky photoelectrode utilizes a tailored plasmonic particle grating to significantly boost photon to electron conversion efficiency (IPCE), achieving up to seven times higher performance in certain light conditions.
  • The study confirms that the interaction between plasmonic modes and guided resonances in the grating structure leads to improved charge generation and longevity, presenting a novel integration approach for enhanced energy harvesting technologies.
View Article and Find Full Text PDF

In myelodysplastic syndromes (MDS), the IL-1β pathway is upregulated, and previous studies using mouse models of founder MDS mutations demonstrated that it enhances hematopoietic stem and progenitor cells' (HSPCs') aberrant differentiation towards the myeloid lineage at the expense of erythropoiesis. To evaluate whether targeting the IL-1β signaling pathway can rescue ineffective erythropoiesis in patients with MDS, we designed a phase 2 non-randomized single-arm clinical trial (NCT04239157) to assess the safety profile and efficacy of the IL-1β inhibitor canakinumab in previously treated lower-risk MDS patients. We enrolled 25 patients with a median age of 74 years; 60% were male, 16% had lower-risk MDS, 84% had intermediate-1 risk MDS according to the International Prognostic Scoring System score, and 80% failed hypomethylating agent therapy.

View Article and Find Full Text PDF

Quantitative phase imaging (QPI) enables nondestructive, real-time, label-free imaging of transparent specimens and can reveal information about their fundamental properties such as cell size and morphology, mass density, particle dynamics, and cellular fluctuations. Development of high-performance and low-cost quantitative phase imaging systems is thus required in many fields, including on-site biomedical imaging and industrial inspection. Here, we propose an ultracompact, highly stable interferometer based on a single-layer dielectric metasurface for common path off-axis digital holography and experimentally demonstrate quantitative phase imaging.

View Article and Find Full Text PDF

Photonic biosensors are promising platforms for the rapid detection of pathogens with the potential to replace conventional diagnostics based on microbiological culturing methods. Intricately designed sensing elements with robust architectures can offer highly sensitive detection at minimal development cost enabling rapid adoption in low-resource settings. In this work, an optical detection scheme is developed by structuring guided mode resonance (GMR) on a highly stable, transparent silicon nitride (SiN) substrate and further biofunctionalized to identify a specific bacteria Pseudomonas aeruginosa.

View Article and Find Full Text PDF

We present experimental demonstration of tilt-mirror assisted transmission structured illumination microscopy (tSIM) that offers a large field of view super resolution imaging. An assembly of custom-designed tilt-mirrors are employed as the illumination module where the sample is excited with the interference of two beams reflected from the opposite pair of mirror facets. Tunable frequency structured patterns are generated by changing the mirror-tilt angle and the hexagonal-symmetric arrangement is considered for the isotropic resolution in three orientations.

View Article and Find Full Text PDF
Article Synopsis
  • The paper introduces a new super-resolution technique called saturable absorption assisted nonlinear structured illumination microscopy (SAN-SIM), which utilizes the saturable absorption properties of specific materials.
  • By using this approach, the technique transforms regular sinusoidal excitation into nonlinear illumination, allowing for higher harmonic frequencies to enhance image resolution significantly beyond the traditional diffraction limit.
  • The theoretical framework and numerical simulations of SAN-SIM demonstrate its effectiveness in achieving super-resolution, with tests on both symmetric and random samples showcasing improved image quality through a specialized blind reconstruction method.
View Article and Find Full Text PDF

We present a concept to design narrow linewidth dual-channel wavelength filters using the principle of wavelength tuning under conical mounting of guided mode resonance structure. The general procedure for the design of such filters from visible to NIR wavelength range is presented and validated experimentally. We show that already fabricated guided mode resonance structures that do not show dual wavelength filtering at these wavelengths in classical mounting can exhibit dual wavelength filtering in conical mounting.

View Article and Find Full Text PDF

Surface plasmon resonance-based sensors have emerged as commercially fostering portable biodetectors. The scientific community is engaged in extensive research to improve their performance in terms of sensitivity, selectivity, and reproducibility for the recognition of specific biomolecules. Essentially, there is a need for miniaturizing the size of existing sensors with innovative designs without compromising their bioaffinity and sensitivity performance.

View Article and Find Full Text PDF

In this report, we propose a large-area, scalable and reconfigurable single-shot optical fabrication method using phase-controlled interference lithography (PCIL) to realize submicrometer chiral woodpile photonic structures. This proposed technique involves a 3 + 3 double-cone geometry with beams originated from a computed phase mask displayed on a single spatial light modulator. Simulation studies show the filtering response of such structures for linearly polarized plane wave illumination, with structural features tunable through a single parameter of interference angle.

View Article and Find Full Text PDF

A complete study of electric field vectors and efficiencies of diffraction orders for a phase pattern addressed to a pixelated spatial light modulator (SLM) is discussed here. General mathematical expressions of electric field vectors from SLM are explored here analytically for an arbitrary pattern on SLM with a given input electric field. Using the general expression, we calculate orientations of the electric fields of diffraction for sinusoidal and binary patterns of varying duty cycles.

View Article and Find Full Text PDF

Olfactory systems of different species show variations in structure and physiology despite some conserved features. We characterized the olfactory circuit of the grasshopper Hieroglyphus banian of family Acrididae (subfamily: Hemiacridinae) and compared it to a well-studied species of locust, Schistocerca americana (subfamily: Cyrtacanthacridinae), also belonging to family Acrididae. We used in vivo electrophysiological, immunohistochemical, and anatomical (bulk tract tracing) methods to elucidate the olfactory pathway from the second-order neurons in antennal lobe to the fourth-order neurons in β-lobe of H.

View Article and Find Full Text PDF

Apis dorsata is an open-nesting, undomesticated, giant honey bee found in southern Asia. We characterized a number of aspects of olfactory system of Apis dorsata and compared it with the well-characterized, western honeybee, Apis mellifera, a domesticated, cavity-nesting species. A.

View Article and Find Full Text PDF

We report results on unsupervised organization of cervical cells using microscopy of Pap-smear samples in brightfield (3-channel color) as well as high-resolution quantitative phase imaging modalities. A number of morphological parameters are measured for each of the 1450 cell nuclei (from 10 woman subjects) imaged in this study. The principal component analysis (PCA) methodology applied to this data shows that the cell image clustering performance improves significantly when brightfield as well as phase information is utilized for PCA as compared to when brightfield-only information is used.

View Article and Find Full Text PDF

The capacity and condition under which the lateral transfer of olfactory memory is possible in insects is still debated. Here, we present evidence in two species of honeybees, and , consistent with the lack of ability to transfer olfactory associative memory in a proboscis extension response (PER) associative conditioning paradigm, where the untrained antenna is blocked by an insulating coat. We show that the olfactory system on each side of the bee can learn and retrieve information independently and the retrieval using the antenna on the side contralateral to the trained one is not affected by the training.

View Article and Find Full Text PDF

For many photonic applications, it is important to confine light of a specific wavelength at a certain volume of interest at low losses. So far, it is only possible to use the polarized light perpendicular to the solid grid lines to excite waveguide-plasmon polaritons in a waveguide-supported hybrid structure. In our work, we use a plasmonic grating fabricated by colloidal self-assembly and an ultrathin injection layer to guide the resonant modes selectively.

View Article and Find Full Text PDF

Metamaterial structures of different basis shapes and orientations and with gradient refractive index variations are applicable in integrated photonics, miniaturized optoelectronics, diffraction limited focusing, and super-resolution imaging. We present design and experimental realizations of gradient metamaterial structures embedded with linear periodic defects and propose its applications in on-substrate color filtering through a simulation-based study. A combination of phase engineered plane beams in double cone geometry and an axial plane beam are interfered to obtain different gradient basis metamaterial structures with linear defects in two dimensions and three dimensions, respectively.

View Article and Find Full Text PDF

Mechanotransduction is likely to be an important mechanism of signaling in thin, elongated cells such as neurons. Maintenance of prestress or rest tension may facilitate mechanotransduction in these cells. In recent years, functional roles for mechanical tension in neuronal development and physiology are beginning to emerge, but the cellular mechanisms regulating neurite tension remain poorly understood.

View Article and Find Full Text PDF

In this Letter we report for the first time, to the best of our knowledge, a phase spatial light modulator (SLM)-based interference lithography (IL) approach for the realization of hexagonally packed helical photonic structures with a submicrometer scale spatial, as well as axial, periodicity over a large area. A phase-only SLM is used to electronically generate six phase-controlled plane beams. These six beams from the front side and a direct central backside beam are used together in an "inverted umbrella" geometry setup to realize the desired submicrometer axial periodic chiral photonic structures through IL.

View Article and Find Full Text PDF

We have investigated the antireflection and light trapping properties of two-dimensional grating arrays in the hexagonal symmetry with various texture morphologies. Optical simulation based on finite-difference time-domain (FDTD) analysis is carried out to understand the role of the structure profile for different periodicities and heights to achieve enhanced light trapping. The considered active medium of interest is 200-nm-thick hydrogenated amorphous silicon.

View Article and Find Full Text PDF

In this Letter, we report a large-area and single-step optical fabrication technique based on phase engineering interference lithography that is scalable and reconfigurable for the realization of submicrometer scale periodic face-centered cubic inverse woodpile photonic structures. The realized inverse woodpile structure on positive having four number axial layers with 740 nm spatial and 1046 nm axial periodicities shows 10% reflectance and 90% transmittance at 776 nm wavelength that can further be improved for the addition of axial layers. The realized structure can be transferred to crystalline silicon for realizing a bandpass/rejection near-infrared filter in a reflection/transmission mode.

View Article and Find Full Text PDF

We report an ultra-sensitive refractive index (RI) sensor employing phase detection in a guided mode resonance (GMR) structure. By incorporating the GMR structure in to a Mach-Zehnder Interferometer, we measured the phase of GMR signal by calculating the amount of fringe shift. Since the phase of GMR signal varies rapidly around the resonance wavelength, the interference fringe pattern it forms with the reference signal becomes very sensitive to the surrounding RI change.

View Article and Find Full Text PDF

Tandem running is a primitive recruitment method employed by many ant genera. This study characterizes this behaviour during the recruitment of colony mates to a new nest in an Indian ant . Tandem leaders who have knowledge of the new nest lead a single follower at a time, to the destination by maintaining physical contact.

View Article and Find Full Text PDF

We present a new light trapping technique to reduce reflection loss, as well as for light, focusing at submicron scales for solar cell and image sensing applications. We have fabricated hexagonal arrays of ZnO funnel-like structures on Si substrate by the patterned growth of ZnO nanowires in a hydrothermal growth process. The funnels are optimized so that the effective refractive index along the vertical direction decreases gradually from the Si surface to the top of funnel to reduce Fresnel reflection at a device-air interface.

View Article and Find Full Text PDF

This Letter demonstrates a single-step optical realization method for hexagonal and square lattice-based dual periodic motheye and gradient-index-array photonic structures over large areas. Computed phase mask of gradient interference patterns are used as inputs to a phase-only spatial light modulator (SLM), and the first-order diffracting beams are coherently superposed with the help of a 2f-2f Fourier filtering setup to avoid complex optical geometry for generation and control of individual beams. The simulated interference patterns are verified experimentally through a CMOS camera.

View Article and Find Full Text PDF

We present a technique for refractive index sensing using a phase grating structure. A grating under normal incidence can be designed such that the first-order diffracted light travels at a diffraction angle of 90° with respect to the zeroth order. The diffracted light, which is along the direction of periodicity, can further be diffracted from the grating and interfere with the zeroth-order light.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9t4vamq0t1t187qnmjp67mgspoop6fbc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once