Cellular signaling is regulated by the assembly of proteins into higher-order complexes. Bottom-up creation of synthetic protein assemblies, especially asymmetric complexes, is highly challenging. Presented here is the design and implementation of asymmetric assembly of a ternary protein complex facilitated by Rosetta modeling and thermodynamic analysis.
View Article and Find Full Text PDFLiving cells regulate key cellular processes by spatial organisation of catalytically active proteins in higher-order signalling complexes. These act as organising centres to facilitate proximity-induced activation and inhibition of multiple intrinsically weakly associating signalling components, which makes elucidation of the underlying protein-protein interactions challenging. Here we show that DNA origami nanostructures provide a programmable molecular platform for the systematic analysis of signalling proteins by engineering a synthetic DNA origami-based version of the apoptosome, a multi-protein complex that regulates apoptosis by co-localizing multiple caspase-9 monomers.
View Article and Find Full Text PDFThe DNA origami technique has proven to have tremendous potential for therapeutic and diagnostic applications like drug delivery, but the relatively low concentrations of cations in physiological fluids cause destabilization and degradation of DNA origami constructs preventing applications. To reveal the mechanisms behind DNA origami stabilization by cations, we performed atomistic molecular dynamics simulations of a DNA origami rectangle in aqueous solvent with varying concentrations of magnesium and sodium as well as polyamines like oligolysine and spermine. We explored the binding of these ions to DNA origami in detail and found that the mechanism of stabilization differs between ion types considerably.
View Article and Find Full Text PDF