Publications by authors named "Joaquin Reyna"

Systems vaccinology studies have been used to build computational models that predict individual vaccine responses and identify the factors contributing to differences in outcome. Comparing such models is challenging due to variability in study designs. To address this, we established a community resource to compare models predicting booster responses and generate experimental data for the explicit purpose of model evaluation.

View Article and Find Full Text PDF

Motivation: With the increased reliance on multi-omics data for bulk and single cell analyses, the availability of robust approaches to perform unsupervised analysis for clustering, visualization, and feature selection is imperative. Joint dimensionality reduction methods can be applied to multi-omics datasets to derive a global sample embedding analogous to single-omic techniques such as Principal Components Analysis (PCA). Multiple co-inertia analysis (MCIA) is a method for joint dimensionality reduction that maximizes the covariance between block- and global-level embeddings.

View Article and Find Full Text PDF

HiChIP enables cost-effective and high-resolution profiling of regulatory and structural loops. To leverage the increasing number of publicly available HiChIP datasets from diverse cell lines and primary cells, we developed the Loop Catalog (https://loopcatalog.lji.

View Article and Find Full Text PDF

Systems vaccinology studies have identified factors affecting individual vaccine responses, but comparing these findings is challenging due to varying study designs. To address this lack of reproducibility, we established a community resource for comparing Bordetella pertussis booster responses and to host annual contests for predicting patients' vaccination outcomes. We report here on our experiences with the "dry-run" prediction contest.

View Article and Find Full Text PDF

Computational models that predict an individual's response to a vaccine offer the potential for mechanistic insights and personalized vaccination strategies. These models are increasingly derived from systems vaccinology studies that generate immune profiles from human cohorts pre- and post-vaccination. Most of these studies involve relatively small cohorts and profile the response to a single vaccine.

View Article and Find Full Text PDF

Changes in the three-dimensional (3D) structure of the genome are an emerging hallmark of cancer. Cancer-associated copy number variants and single nucleotide polymorphisms promote rewiring of chromatin loops, disruption of topologically associating domains (TADs), active/inactive chromatin state switching, leading to oncogene expression and silencing of tumor suppressors. However, little is known about 3D changes during cancer progression to a chemotherapy-resistant state.

View Article and Find Full Text PDF

The MHC region is highly associated with autoimmune and infectious diseases. Here we conduct an in-depth interrogation of associations between genetic variation, gene expression and disease. We create a comprehensive map of regulatory variation in the MHC region using WGS from 419 individuals to call eight-digit HLA types and RNA-seq data from matched iPSCs.

View Article and Find Full Text PDF

Large-scale collections of induced pluripotent stem cells (iPSCs) could serve as powerful model systems for examining how genetic variation affects biology and disease. Here we describe the iPSCORE resource: a collection of systematically derived and characterized iPSC lines from 222 ethnically diverse individuals that allows for both familial and association-based genetic studies. iPSCORE lines are pluripotent with high genomic integrity (no or low numbers of somatic copy-number variants) as determined using high-throughput RNA-sequencing and genotyping arrays, respectively.

View Article and Find Full Text PDF

In this study, we used whole-genome sequencing and gene expression profiling of 215 human induced pluripotent stem cell (iPSC) lines from different donors to identify genetic variants associated with RNA expression for 5,746 genes. We were able to predict causal variants for these expression quantitative trait loci (eQTLs) that disrupt transcription factor binding and validated a subset of them experimentally. We also identified copy-number variant (CNV) eQTLs, including some that appear to affect gene expression by altering the copy number of intergenic regulatory regions.

View Article and Find Full Text PDF