A key challenge of the modern genomics era is developing data-driven representations of gene function. Here, we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-scale genotype-phenotype maps comprising >20,000 single-gene CRISPR-Cas9-based knockout experiments in >30 million cells. Our optical pooled cell profiling approach (PERISCOPE) combines a de-stainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.
View Article and Find Full Text PDFObjective: Skeletal muscle is a pivotal organ for the coordination of systemic metabolism, constituting one of the largest storage site for glucose, lipids and amino acids. Tight temporal orchestration of protein breakdown in times of fasting has to be balanced with preservation of muscle mass and function. However, the molecular mechanisms that control the fasting response in muscle are poorly understood.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease is a continuum of disorders among which non-alcoholic steatohepatitis (NASH) is particularly associated with a negative prognosis. Hepatocyte lipotoxicity is one of the main pathogenic factors of liver fibrosis and NASH. However, the molecular mechanisms regulating this process are poorly understood.
View Article and Find Full Text PDFSRP-35 is a short-chain dehydrogenase/reductase belonging to the DHRS7C dehydrogenase/ reductase family 7. Here we show that its over-expression in mouse skeletal muscles induces enhanced muscle performance in vivo, which is not related to alterations in excitation-contraction coupling but rather linked to enhanced glucose metabolism. Over-expression of SRP-35 causes increased phosphorylation of Akt, triggering plasmalemmal targeting of GLUT4 and higher glucose uptake into muscles.
View Article and Find Full Text PDFEnhanced coverage and sensitivity of next-generation 'omic' platforms has allowed the characterization of gene, metabolite and protein responses in highly metabolic tissues, such as, skeletal muscle. A limitation, however, is the capability to determine interaction between dynamic biological networks. To address this limitation, we applied Weighted Analyte Correlation Network Analysis (WACNA) to RNA-seq and metabolomic datasets to identify correlated subnetworks of transcripts and metabolites in response to a high-fat diet (HFD)-induced obesity and/or exercise.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2017
Although the signal pathways mediating muscle protein synthesis and degradation are well characterized, the transcriptional processes modulating skeletal muscle mass and adaptive growth are poorly understood. Recently, studies in mouse models of muscle wasting or acutely exercised human muscle have suggested a potential role for the transcription factor signal transducer and activator of transcription 3 (STAT3), in adaptive growth. Hence, in the present study we sought to define the contribution of STAT3 to skeletal muscle adaptive growth.
View Article and Find Full Text PDFCyclic nucleotide phosphodiesterase (PDE)3 and PDE4 provide the major PDE activity in cardiac myocytes and shape β1-adrenoceptor-dependent cardiac cAMP signaling but their role in regulating β2-adrenoceptor-mediated responses is less well known. We investigated potential differences in PDE3 and PDE4 activities between right (RV) and left (LV) ventricular myocardium, and their role in regulating β2-adrenoceptor effects. PDE3 activity in the microsomal fraction was lower in RV than in LV but was the same in the cytosolic fraction.
View Article and Find Full Text PDFThe present study aimed to investigate the role of the mechanistic target of rapamycin complex 1 (mTORC1) in the regulation of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis following endurance exercise. Forty-two female C57BL/6 mice performed 1 h of treadmill running (18 m min(-1) ; 5° grade), 1 h after i.p.
View Article and Find Full Text PDFSkeletal muscle metabolism is highly dependent on mitochondrial function, with impaired mitochondrial biogenesis associated with the development of metabolic diseases such as insulin resistance and type 2 diabetes. Mitochondria display substantial plasticity in skeletal muscle, and are highly sensitive to levels of physical activity. It is thought that physical activity promotes mitochondrial biogenesis in skeletal muscle through increased expression of genes encoded in both the nuclear and the mitochondrial genome; however, how this process is co-ordinated at the cellular level is poorly understood.
View Article and Find Full Text PDFThe important regulator of cardiac function, cAMP, is hydrolyzed by different cyclic nucleotide phosphodiesterases (PDEs), whose expression and activity are not uniform throughout the heart. Of these enzymes, PDE2 shapes β1 adrenoceptor-dependent cardiac cAMP signaling, both in the right and left ventricular myocardium, but its role in regulating β2 adrenoceptor-mediated responses is less well known. Our aim was to investigate possible differences in PDE2 transcription and activity between right (RV) and left (LV) rat ventricular myocardium, as well as its role in regulating β2 adrenoceptor effects.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
November 2014
It is well established that exercise elicits a finely tuned adaptive response in skeletal muscle, with contraction frequency, duration, and recovery shaping skeletal muscle plasticity. Given the power of physical activity to regulate metabolic health, numerous research groups have focused on the molecular mechanisms that sense, interpret, and translate this contractile signal into postexercise adaptation. While our current understanding is that contraction-sensitive allosteric factors (e.
View Article and Find Full Text PDFConcurrent training (the combination of endurance exercise to resistance training) is a common practice for athletes looking to maximise strength and endurance. Over 20 years ago, it was first observed that performing endurance exercise after resistance exercise could have detrimental effects on strength gains. At the cellular level, specific protein candidates have been suggested to mediate this training interference; however, at present, the physiological reason(s) behind the concurrent training effect remain largely unknown.
View Article and Find Full Text PDFAims/hypothesis: Physical activity improves oxidative capacity and exerts therapeutic beneficial effects, particularly in the context of metabolic diseases. The peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α (PGC-1α) and the nuclear receptor PPARβ/δ have both been independently discovered to play a pivotal role in the regulation of oxidative metabolism in skeletal muscle, though their interdependence remains unclear. Hence, our aim was to determine the functional interaction between these two factors in mouse skeletal muscle in vivo.
View Article and Find Full Text PDFβ-adrenoceptors are members of the G protein-coupled receptor superfamily which play a key role in the regulation of myocardial function. Their activation increases cardiac performance but can also induce deleterious effects such as cardiac arrhythmias or myocardial apoptosis. In fact, inhibition of β-adrenoceptors exerts a protective effect in patients with sympathetic over-stimulation during heart failure.
View Article and Find Full Text PDFAims: Cardiac function is modulated by the sympathetic nervous system through β-adrenergic receptor (β-AR) activity and this represents the main regulatory mechanism for cardiac performance. To date, however, the metabolic and molecular responses to β(2)-agonists are not well characterized. Therefore, we studied the inotropic effect and signaling response to selective β(2)-AR activation by tulobuterol.
View Article and Find Full Text PDFSodium pyruvate can increase mitochondrial biogenesis in C2C12 myoblasts in a peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1alpha)-independent manner. The present study examined the effect of 72-h treatment with sodium pyruvate (5-50 mM) or sodium chloride (50 mM) as an osmotic control on the regulation of mitochondrial substrate metabolism and biogenesis in C2C12 myotubes. Pyruvate (50 mM) increased the levels of fatty acid oxidation enzymes (CD36, 61%, and beta-oxidative enzyme 3-hydroxyacyl-CoA dehydrogenase, 54%) and the expression of cytochrome-c oxidase subunit I (220%) and cytochrome c (228%), consistent with its previous described role as a promoter of mitochondrial biogenesis.
View Article and Find Full Text PDFConsiderable variability exists between people in their health- and performance-related adaptations to conventional endurance training. We hypothesized that some of this variability might be due to differences in the training stimulus received by the working muscles. In 71 young sedentary women we observed large variations in the ratio of one-leg cycling muscle aerobic capacity (V(O2peak)) to two-leg cycling whole-body maximal oxygen uptake (V(O2max); Ratio(1:2); range 0.
View Article and Find Full Text PDF