Publications by authors named "Joaquin Moreno-Contreras"

SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. Here we show that the host E3-ubiquitin ligase TRIM7 acts as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein.

View Article and Find Full Text PDF

Lateral flow test (LFTs) have been used as an alternative to reverse transcription quantitative PCR (RT-qPCR) in point-of-care testing. Despite their benefits, the sensitivity of LFTs may be low and is affected by several factors. We have previously reported the feasibility of using direct lysis of individual or pools of saliva samples from symptomatic and asymptomatic patients as a source of viral genomes for detection by RT-qPCR.

View Article and Find Full Text PDF

Viruses have evolved different strategies to overcome their recognition by the host innate immune system. The addition of caps at their 5' RNA ends is an efficient mechanism not only to ensure escape from detection by the innate immune system but also to ensure the efficient synthesis of viral proteins. Rotavirus mRNAs contain a type 1 cap structure at their 5' end that is added by the viral capping enzyme VP3, which is a multifunctional protein with all the enzymatic activities necessary to add the cap and also functions as an antagonist of the 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway.

View Article and Find Full Text PDF

In many countries a second wave of infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has occurred, triggering a shortage of reagents needed for diagnosis and compromising the capacity of laboratory testing. There is an urgent need to develop methods to accelerate the diagnostic procedures. Pooling samples represents a strategy to overcome the shortage of reagents, since several samples can be tested using one reaction, significantly increasing the number and speed with which tests can be carried out.

View Article and Find Full Text PDF

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a current public health concern. Rapid diagnosis is crucial, and reverse transcription polymerase chain reaction (RT-PCR) is presently the reference standard for SARS-CoV-2 detection.

Objective: Automated RT-PCR analysis (ARPA) is a software designed to analyze RT-PCR data for SARSCoV-2 detection.

View Article and Find Full Text PDF

As part of any plan to lift or ease the confinement restrictions that are in place in many different countries, there is an urgent need to increase the capacity of laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Detection of the viral genome through reverse transcription-quantitative PCR (RT-qPCR) is the gold standard for this virus; however, the high demand of the materials and reagents needed to sample individuals, purify the viral RNA, and perform the RT-qPCR has resulted in a worldwide shortage of several of these supplies. Here, we show that directly lysed saliva samples can serve as a suitable source for viral RNA detection that is less expensive and can be as efficient as the classical protocol, which involves column purification of the viral RNA.

View Article and Find Full Text PDF

Alphaviruses are arthropod-borne RNA viruses that are capable of causing severe disease and are a significant burden to public health. Alphaviral replication results in the production of both capped and noncapped viral genomic RNAs (ncgRNAs), which are packaged into virions during infections of vertebrate and invertebrate cells. However, the roles that the ncgRNAs play during alphaviral infection have yet to be exhaustively characterized.

View Article and Find Full Text PDF