Ever since it was discovered in the monkey's prefrontal cortex, persistent neuronal activity during the delay period of delay tasks has been considered a phenomenon of working memory. Operationally, this interpretation is correct, because during that delay those tasks require the memorization of a sensory cue, commonly visual. What is incorrect is the assumption that the persistent activity during the delay is caused exclusively by the retention of the sensory cue.
View Article and Find Full Text PDFRepeat sports-related concussive/subconcussive injury (RC/SCI) is related to memory impairment. : We sought to determine memory differences between persons with RC/SCI, moderate-to-severe single-impact traumatic brain injury (SI-TBI), and healthy controls. MRI scans from a subsample of participants with SI-TBI were used to identify the neuroanatomical correlates of observed memory process differences between the brain injury groups.
View Article and Find Full Text PDFThroughout the nervous system, posterior structures are mainly devoted to receptive functions-sensation and perception-while anterior structures are devoted to motor functions. In the cortex, that dichotomy is unclear because perception and action are intertwined in the perception-action cycle, the biocybernetic cycle that adapts the organism to its environment. All neural systems store information (memory), which they enact in behavior and language.
View Article and Find Full Text PDFOur perception of the world is represented in widespread, overlapping, and interactive neuronal networks of the cerebral cortex. A majority of physiological studies on the subject have focused on oscillatory synchrony as the binding mechanism for representation and transmission of neural information. Little is known, however, about the stability of that synchrony during prolonged cognitive operations that span more than just a few seconds.
View Article and Find Full Text PDFPrevious studies have shown that neurons of monkey dorsolateral prefrontal cortex (DLPFC) integrate information across modalities and maintain it throughout the delay period of working-memory (WM) tasks. However, the mechanisms of this temporal integration in the DLPFC are still poorly understood. In the present study, to further elucidate the role of the DLPFC in crossmodal WM, we trained monkeys to perform visuo-haptic (VH) crossmodal and haptic-haptic (HH) unimodal WM tasks.
View Article and Find Full Text PDFThe pFC enables the essential human capacities for predicting future events and preadapting to them. These capacities rest on both the structure and dynamics of the human pFC. Structurally, pFC, together with posterior association cortex, is at the highest hierarchical level of cortical organization, harboring neural networks that represent complex goal-directed actions.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is associated with deficits in memory for the content of completed activities. However, TBI groups have shown variable memory for the temporal order of activities. We sought to clarify the conditions under which temporal order memory for activities is intact following TBI.
View Article and Find Full Text PDFTrends Cogn Sci
April 2012
Working memory is critical to the integration of information across time in goal-directed behavior, reasoning and language, yet its neural substrate is unknown. Based on recent research, we propose a mechanism by which the brain can retain working memory for prospective use, thereby bridging time in the perception/action cycle. The essence of the mechanism is the activation of 'cognits', which consist of distributed, overlapping and interactive cortical networks that in the aggregate encode the long-term memory of the subject.
View Article and Find Full Text PDFNeurons in the cortex exhibit a number of patterns that correlate with working memory. Specifically, averaged across trials of working memory tasks, neurons exhibit different firing rate patterns during the delay of those tasks. These patterns include: 1) persistent fixed-frequency elevated rates above baseline, 2) elevated rates that decay throughout the tasks memory period, 3) rates that accelerate throughout the delay, and 4) patterns of inhibited firing (below baseline) analogous to each of the preceding excitatory patterns.
View Article and Find Full Text PDFConverging evidence from humans and nonhuman primates is obliging us to abandon conventional models in favor of a radically different, distributed-network paradigm of cortical memory. Central to the new paradigm is the concept of memory network or cognit--that is, a memory or an item of knowledge defined by a pattern of connections between neuron populations associated by experience. Cognits are hierarchically organized in terms of semantic abstraction and complexity.
View Article and Find Full Text PDFThis study explores the cortical cell dynamics of unimodal and cross-modal working memory (WM). Neuronal activity was recorded from parietal areas of monkeys performing delayed match-to-sample tasks with tactile or visual samples. Tactile memoranda (haptic samples) consisted of rods with differing surface features (texture or orientation of ridges) perceived by active touch.
View Article and Find Full Text PDFExecutive actions are represented and hierarchically organized in the cortex of the frontal lobe. The representation and coordination of an action or series of actions have the same anatomical substrate: an executive neuronal network (cognit) in forntal cortex. That network interacts structurally and dynamically with perceptual networks of posterior cortex at the highest levels of the perception-action cycle.
View Article and Find Full Text PDFThe prevalent concept in modular models is that there are discrete cortical domains dedicated more or less exclusively to such cognitive functions as visual discrimination, language, spatial attention, face recognition, motor programming, memory retrieval, and working memory. Most of these models have failed or languished for lack of conclusive evidence. In their stead, network models are emerging as more suitable and productive alternatives.
View Article and Find Full Text PDFThe neural substrate for behavioral, cognitive and linguistic actions is hierarchically organized in the cortex of the frontal lobe. In their methodologically impeccable study, Koechlin et al. reveal the neural dynamics of the frontal hierarchy in behavioral action.
View Article and Find Full Text PDFNeurons in the monkey's anterior parietal cortex (Brodmann's areas 3a, 3b, 1, and 2) have been reported to retain information from a visual cue that has been associated with a tactile stimulus in a haptic memory task. This cross-modal transfer indicates that neurons in somatosensory cortex can respond to non-tactile stimuli if they are associated with tactile information needed for performance of the task. We hypothesized that neurons in somatosensory cortex would be activated by other non-tactile stimuli signaling the haptic movements--of arm and hand--that the task required.
View Article and Find Full Text PDFIn phylogeny as in ontogeny, the association cortex of the frontal lobe, also known as the prefrontal cortex, is a late-developing region of the neocortex. It is also one of the cortical regions to undergo the greatest expansion in the course of both evolution and individual maturation. In the human adult, the prefrontal cortex constitutes as much as nearly one-third of the totality of the neocortex.
View Article and Find Full Text PDF