(1) Background: the use of Mesenchymal Stromal Cells (MSC) in emerging therapies for spinal cord injury (SCI) hold the potential to improve functional recovery. However, the development of cell-based medicines is challenging and preclinical studies addressing quality, safety and efficacy must be conducted prior to clinical testing; (2) Methods: herein we present (i) the characterization of the quality attributes of MSC from the Wharton's jelly (WJ) of the umbilical cord, (ii) safety of intrathecal infusion in a 3-month subchronic toxicity assessment study, and (iii) efficacy in a rat SCI model by controlled impaction (100 kdynes) after single (day 7 post-injury) and repeated dose of 1 × 10 MSC,WJ (days 7 and 14 post-injury) with 70-day monitoring by electrophysiological testing, motor function assessment and histology evaluation; (3) Results: no toxicity associated to MSC,WJ infusion was observed. Regarding efficacy, recovery of locomotion was promoted at early time points.
View Article and Find Full Text PDFResearch on microglia has established the differentiation between the so-called M1 and M2 phenotypes. However, new frameworks have been proposed attempting to discern between meaningful microglia profiles. We have set up an microglial activation model by adding an injured spinal cord (SCI) lysate to microglial cultures, obtained from postnatal rats, in order to mimic the environment of the spinal cord after injury.
View Article and Find Full Text PDFWe currently lack effective treatments for the devastating loss of neural function associated with spinal cord injury (SCI). In this study, we evaluated a combination therapy comprising human neural stem cells derived from induced pluripotent stem cells (iPSC-NSC), human mesenchymal stem cells (MSC), and a pH-responsive polyacetal-curcumin nanoconjugate (PA-C) that allows the sustained release of curcumin. In vitro analysis demonstrated that PA-C treatment protected iPSC-NSC from oxidative damage in vitro, while MSC co-culture prevented lipopolysaccharide-induced activation of nuclear factor-κB (NF-κB) in iPSC-NSC.
View Article and Find Full Text PDFBackground Aims: Spinal cord injury (SCI) represents a devastating condition leading to severe disability related to motor, sensory and autonomic dysfunction. Stem cell transplantation is considered a potential emerging therapy to stimulate neuroplastic and neuroregenerative processes after SCI. In this clinical trial, the authors investigated the safety and clinical recovery effects of intrathecal infusion of expanded Wharton jelly mesenchymal stromal cells (WJ-MSCs) in chronic complete SCI patients.
View Article and Find Full Text PDFOBJECTIVE Artificial nerve guides are being developed to substitute for autograft repair after peripheral nerve injuries. However, the use of conduits is limited by the length of the gap that needs to be bridged, with the success of regeneration highly compromised in long gaps. Addition of aligned proregenerative cells and extracellular matrix (ECM) components inside the conduit can be a good strategy to achieve artificial grafts that recreate the natural environment offered by a nerve graft.
View Article and Find Full Text PDFSpinal cord injury (SCI) causes loss of neural functions below the level of the lesion due to interruption of spinal pathways and secondary neurodegenerative processes. The transplant of neural stem cells (NSCs) is a promising approach for the repair of SCI. Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) is expected to provide an autologous source of iPSC-derived NSCs, avoiding the immune response as well as ethical issues.
View Article and Find Full Text PDFUnlabelled: Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1-LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies.
View Article and Find Full Text PDFCell therapy for spinal cord injury (SCI) is a promising strategy for clinical application. Mesenchymal stem cells (MSC) have demonstrated beneficial effects following transplantation in animal models of SCI. However, despite the immunoprivilege properties of the MSC, their survival in the injured spinal cord is reduced due to the detrimental milieu in the damaged tissue and immune rejection of the cells.
View Article and Find Full Text PDFCell therapy for spinal cord injury (SCI) is a promising strategy for clinical application. Both bone marrow mesenchymal stromal cells (MSCs; also known as bone marrow-derived 'mesenchymal stem cells') and olfactory ensheathing cells (OECs) have demonstrated beneficial effects following transplantation in animal models of SCI. However, due to the large number of affecting parameters that determine the therapy success and the lack of methodological consensus, the comparison of different works is difficult.
View Article and Find Full Text PDFTransplantation of bone marrow derived mesenchymal stromal cells (MSC) or olfactory ensheathing cells (OEC) have demonstrated beneficial effects after spinal cord injury (SCI), providing tissue protection and improving the functional recovery. However, the changes induced by these cells after their transplantation into the injured spinal cord remain largely unknown. We analyzed the changes in the spinal cord transcriptome after a contusion injury and MSC or OEC transplantation.
View Article and Find Full Text PDFMicroglial cell plays a crucial role in the development and establishment of chronic neuropathic pain after spinal cord injuries. As neuropathic pain is refractory to many treatments and some drugs only present partial efficacy, it is essential to study new targets and mechanisms to ameliorate pain signs. For this reason we have used glibenclamide (GB), a blocker of KATP channels that are over expressed in microglia under activation conditions.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
September 2011
Spinal cord injury (SCI) is a traumatic disorder resulting in a functional deficit that usually leads to severe and permanent paralysis. After the initial insult to the spinal cord, additional structure and function are lost through an active and complex secondary process. Since there is not effective treatment for SCI, several strategies including cellular, pharmacological and rehabilitation therapies have been approached in animal models.
View Article and Find Full Text PDFIn this work we set up an in vitro model, based on organotypic cultures of spinal cord slices and dorsal root ganglia explants from P7 rats, embedded in a collagen matrix and cultured under the same conditions. As specific reinnervation of end-organs is still an unresolved issue in peripheral nerve research, we characterized a model that allows us to compare under the same conditions motor and sensory neuron regeneration. RT97 labeling was used to visualize the regenerating neurites that extended in the collagen gel from both motor neurons in the spinal cord slices and sensory neurons in the DRG explants after a few days in vitro.
View Article and Find Full Text PDF