Backgroung: The rising complexity and associated side effects of cancer treatments highlight the need for safer and more effective therapeutic agents. Carbon-based nanomaterials such as CDs have been gaining prominence for their unique characteristics, opening avenues for diverse applications such as fluorescence imaging, drug and gene transport, controlled drug delivery, medical diagnosis, and biosensing. Despite promising advancements in research, it remains imperative to scrutinize the properties and potential cytotoxicity of newly developed CDs, ensuring their viability for these applications.
View Article and Find Full Text PDFCarbon dots (CDs) are fluorescent carbon-based nanomaterials with remarkable properties, making them more attractive than traditional fluorophores. Consequently, researchers focused on their development and application in fields such as sensing and bioimaging. One potential advantage of employing CDs is using organic waste as carbon precursors in their synthesis, providing a pathway for waste upcycling for a circular economy.
View Article and Find Full Text PDFGiven the growing scarcity of water and the continuous increase in emerging pollutants detected in water bodies, there is an imperative need to develop new, more effective, and sustainable treatments for wastewater. Advanced oxidation processes (AOPs) are considered a competitive technology for water treatment. Specifically, ozonation has received notable attention as a promising approach for degrading organic pollutants in wastewater.
View Article and Find Full Text PDFBioluminescence (BL) and chemiluminescence (CL) are remarkable processes in which light is emitted due to (bio)chemical reactions. These reactions have attracted significant attention for various applications, such as biosensing, bioimaging, and biomedicine. Some of the most relevant and well-studied BL/CL systems are that of marine imidazopyrazine-based compounds, among which Coelenterazine is a prime example.
View Article and Find Full Text PDFConsidering the increased anthropogenic emissions of CO into the atmosphere, it is important to develop economic incentives for the use of CO capture methodologies. The conversion of CO into heterocyclic carbonates shows significant potential. However, there is a need for suitable organocatalysts to reach the required efficiency for these reactions.
View Article and Find Full Text PDFIn the present work, Eu/Dy ions doped/co-doped into persistent SrAlO microparticles have been developed through solid-state synthesis followed by homogenization and particle size reduction in a ball milling device. These particles have shown a broad and long-persistent afterglow around the 528 nm wavelength of electromagnetic radiation through a broad excitation at around 400 nm. The luminescence intensity was optimized through the selection of different annealing temperatures in the range of 1100 °C to 1500 °C, with intervals of 100 °C.
View Article and Find Full Text PDFAntibiotics (Basel)
September 2023
L. is a Mediterranean plant, commonly known as Blue Tansy due to its blue colour as an essential oil, which is widely used for medicinal purposes. However, there are no studies on the bioactive compounds (especially, phenolic compounds) and the biological properties of their organic extracts.
View Article and Find Full Text PDFArch Biochem Biophys
July 2023
The mode of action toward gastric cancer cells of brominated Coelenteramine, an analogue of a metabolic product of a marine bioluminescent reaction, was investigated by synchrotron radiation-based Fourier Transform Infrared spectrocopy (FTIR). This method revealed that the anticancer activity of brominated Coelenteramine is closely connected with cellular lipids, by affecting their organization and composition. More specifically, there is an increasing extent of oxidative stress, which results in changes in membrane polarity, lipid chain packing and lipid composition.
View Article and Find Full Text PDFThis review focuses on a critical analysis of nanocatalysts for advanced reductive processes (ARPs) and oxidation processes (AOPs) designed for the degradation of poly/perfluoroalkyl substances (PFAS) in water. Ozone, ultraviolet and photocatalyzed ARPs and/or AOPs are the basic treatment technologies. Besides the review of the nanomaterials with greater potential as catalysts for advanced processes of PFAS in water, the perspectives for their future development, considering sustainability, are discussed.
View Article and Find Full Text PDFis an extensively famous medicinal mushroom distributed worldwide. Despite being widely grown in Moroccan forests, there are no studies on its nutritional, nutraceutical and pharmaceutical values. Herein, the objective of this study was to investigate the chemical characterization and antimicrobial properties of methanolic extract.
View Article and Find Full Text PDFThe purpose of this work was to investigate, for the first time to our knowledge, the chemical composition and bioactivity of methanolic extracts (roots, stems, leaves, and flowers) from (L.) Chevall. that grows wild in northern Morocco (the Tangier-Tetouan-Al Hoceima region).
View Article and Find Full Text PDFMolecules
January 2023
Mushrooms have been consumed for centuries and have recently gained more popularity as an important source of nutritional and pharmaceutical compounds. As part of the valorization of mushroom species in northern Morocco, the current study aimed to investigate the chemical compositions and antioxidant properties of two wild edible mushrooms, and . Herein, the bioactive compounds were determined using spectrophotometer methods, and results showed that the value of total phenolic content (TPC) was found to be higher in (32.
View Article and Find Full Text PDFCarbon dots (CDs) are carbon-based nanoparticles with very attractive luminescence features, which simplicity and flexibility of their fabrication can lead to an endless number of CDs with distinct properties and applications. High fluorescence quantum yields (QY) are generally a necessary feature for various applications of CDs. One commonly employed strategy to improve the fluorescence properties of CDs is heteroatom-doping using precursors containing desired heteroatoms (with focus on N-doping).
View Article and Find Full Text PDFMany of the chemotherapeutic drugs for the treatment of cancer are molecules identified and isolated from plants or their synthetic derivatives. This work aimed to identify the bioactive compounds using LC-MS and GC-MS and to evaluate the anticancer activity of the methanolic extracts of roots, stems, leaves, and flowers from . The anticancer activity was evaluated in vitro against two cancer cell lines: human breast carcinoma (MCF-7) and human prostate carcinoma (PC-3), using the MTT assay and microscopic observation.
View Article and Find Full Text PDFMarine Coelenterazine is one of the most well-known chemi-/bioluminescent systems, and in which reaction the chemi-/bioluminophore (Coelenteramide) is generated and chemiexcited to singlet excited states (leading to light emission). Recent studies have shown that the bromination of compounds associated with the marine Coelenterazine system can provide them with new properties, such as anticancer activity and enhanced emission. Given this, our objective is to characterize the photophysical properties of a previously reported brominated Coelenteramide analog, by employing a combined experimental and theoretical approach.
View Article and Find Full Text PDFCancer is a very challenging disease to treat, both in terms of therapeutic efficiency and harmful side effects, which continues to motivate the pursuit for novel molecules with potential anticancer activity. Herein, we have designed, synthesized, and evaluated the cytotoxicity of different brominated coelenteramines, which are metabolic products and synthesis precursors of the chemi-/bioluminescent system of marine coelenterazine. The evaluation of the anticancer potential of these molecules was carried out for both prostate and breast cancer, while also exploring their potential for use in combination therapy.
View Article and Find Full Text PDFChemi- and bioluminescence are remarkable light-emitting phenomena, in which thermal energy is converted into excitation energy due to a (bio)chemical reaction. Among a wide variety of chemi-/bioluminescent systems, one of the most well-known and studied systems is that of marine imidazopyrazinones, such as Coelenterazine and luciferin. Due to the increasing usefulness of their chemi-/bioluminescent reactions in terms of imaging and sensing applications, among others, significant effort has been made over the years by researchers to develop new derivatives with enhanced properties.
View Article and Find Full Text PDFCancer is still a challenging disease to treat, both in terms of harmful side effects and therapeutic efficiency of the available treatments. Herein, to develop new therapeutic molecules, we have investigated the anticancer activity of halogenated derivatives of different components of the bioluminescent system of marine Coelenterazine: Coelenterazine () itself, Coelenteramide (), and Coelenteramine (). We have found that derivatives possess variable anticancer activity toward gastric and lung cancer.
View Article and Find Full Text PDFUV-based advanced oxidation processes (AOPs) (UV/HO and UV/SO) with a titanium(IV)-doped carbon dot, TiP-CD, as a catalyst were developed for the decomposition of Remazol Brilliant Blue R (Reactive Blue 19), an anthraquinone textile dye (at T = 25 °C and pH = 7). The Ti-CD, with marked catalytic UV properties, was successfully synthesized by the one-pot hydrothermal procedure, using L-cysteine as carbon precursor, ethylenediamine as nitrogen source, PEG (polyethylene glycol) as a capping agent, and titanium(IV) isopropoxide (precursor of TiO doping). Contrary to azo dyes (methyl orange, orange II sodium salt, and reactive black 5), which achieved complete degradation in a time interval less than 30 min in the developed AOP systems (UV/HO, UV/SO, and UV/TiO), the RBB-R showed relatively low degradation rates and low discoloration rate constants.
View Article and Find Full Text PDFThe intramolecular chemiexcitation of high-energy peroxide intermediates, such as dioxetanones, is an essential step in different chemi- and bioluminescent reactions. Here, we employed the Time-Dependent Density Functional Theory (TD-DFT) methodology to evaluate if and how external stimuli tune the intramolecular chemiexcitation of model dioxetanones. More specifically, we evaluated whether the strategic placement of ionic species near a neutral dioxetanone model could tune its thermolysis and chemiexcitation profile.
View Article and Find Full Text PDFCarbon dots (CDs) are carbon-based nanomaterials with remarkable properties that can be produced from a wide variety of synthesis routes. Given that "standard" bottom-up procedures are typically associated with low synthesis yields, different authors have been trying to devise alternative high-yield fabrication strategies. However, there is a doubt if sustainability-wise, the latter should be really preferred to the former.
View Article and Find Full Text PDFis a Mediterranean endemic plant commonly known as "Zaïtra" in northern Morocco. As is widely used in traditional medicine and food, this present work aims to investigate the chemical compositions and biological activities of the leaves essential oil (TcLEO), acetonic (TcLAE), and methanolic extract (TcLME). The spectrophotometric determination demonstrated that is a natural source rich in phenolic contents (TPC) and flavonoid contents (TFC) and that TcLME revealed the highest TPC and TFC than TcLAE and TcLEO.
View Article and Find Full Text PDFCoelenterazine and other imidazopyrazinones are important bioluminescent substrates widespread in marine species and can be found in eight phyla of luminescent organisms. Light emission from these systems is caused by the formation and subsequent thermolysis of a dioxetanone intermediate, whose decomposition allows for efficient chemiexcitation to singlet excited states. Interestingly, some studies have also reported the involvement of unexpected dioxetane intermediates in the chemi- and bioluminescent reactions of Coelenterazine, albeit with little information on the underlying mechanisms of these new species.
View Article and Find Full Text PDFCarbon dots (CDs) are carbon-based nanomaterials with advantageous luminescent properties, making them promising alternatives to other molecular and nanosized fluorophores. However, the development of CDs is impaired by the low synthesis yield of standard fabrication strategies, making high-yield strategies essential. To help future studies to focus on cleaner production strategies, we have employed a Life Cycle Assessment (LCA) to compare and understand the environmental impacts of available routes for the high-yield synthesis of carbon dots.
View Article and Find Full Text PDFPharmaceuticals are becoming increasingly more relevant water contaminants, with photocatalysts (such as TiO) being a promising approach to remove these compounds from water. However, TiO has poor sunlight-harvesting capacity, low photonic efficiency, and poor adsorption towards organic pollutants. One of the emerging strategies to enhance the photocatalytic performance of TiO is by conjugating it with fluorescent carbon dots.
View Article and Find Full Text PDF