Curr Stem Cell Res Ther
May 2023
Background: Dand5 encodes a protein that acts as an antagonist to Nodal/TGF-β and Wnt pathways. A mouse knockout (KO) model has shown that this molecule is associated with left-right asymmetry and cardiac development, with its depletion causing heterotaxia and cardiac hyperplasia.
Objective: This study aimed to investigate the molecular mechanisms affected by the depletion of Dand5.
Reprogramming of somatic cells into induced Pluripotent Stem Cells (iPSCs) is a major leap towards personalised approaches to disease modelling and cell-replacement therapies. However, we still lack the ability to fully control the epigenetic status of iPSCs, which is a major hurdle for their downstream applications. Epigenetic fidelity can be tracked by genomic imprinting, a phenomenon dependent on DNA methylation, which is frequently perturbed in iPSCs by yet unknown reasons.
View Article and Find Full Text PDFDeciphering the clues of a regenerative mechanism for the mammalian adult heart would save millions of lives in the near future. Heart failure due to cardiomyocyte loss is still one of the significant health burdens worldwide. Here, we show the potential of a single molecule, DAND5, in mouse pluripotent stem cell-derived cardiomyocytes specification and proliferation.
View Article and Find Full Text PDF