Soybean is one of the most important crops worldwide. Brazil and the United States (US) are the world's two biggest producers of this legume. The increase of publicly available DNA sequencing data as well as high-density genotyping data of multiple soybean germplasms has made it possible to understand the genetic relationships and identify genomics regions that underwent selection pressure during soy domestication and breeding.
View Article and Find Full Text PDFAlthough Brazil is currently the largest soybean producer in the world, only a small number of studies have analyzed the genetic diversity of Brazilian soybean. These studies have shown the existence of a narrow genetic base. The objectives of this work were to analyze the population structure and genetic diversity, and to identify selection signatures in the genome of soybean germplasms from different companies in Brazil.
View Article and Find Full Text PDFBackground: Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous), is an important soybean disease that has been responsible for severe losses in the past.
View Article and Find Full Text PDFBackground: Soybean [Glycine max (L.) Merrill] is one of the most important legumes cultivated worldwide, and Brazil is one of the main producers of this crop. Since the sequencing of its reference genome, interest in structural and allelic variations of cultivated and wild soybean germplasm has grown.
View Article and Find Full Text PDFDrought stress causes significant yield losses in major oil seed crops, such as soybean [Glycine max (L.) Merr]. Few soybean lines have been identified as canopy-wilting tolerant; however, the molecular mechanism conferring tolerance is not fully understood.
View Article and Find Full Text PDF