Publications by authors named "Joao Ruggiero Neto"

Anionic lipid membrane electrostatic potential and solution pH can influence cationic peptide adsorption to these bilayers, especially those containing simultaneously acid and basic residues. Here, we investigate the effects of the pH solution on MP1 (IDWKKLLDAAKQIL-NH2) adsorption to anionic (7POPC:3POPG) lipid vesicles in comparison to its analog H-MP1, with histidines substituting lysines. We used the association of adsorption isotherms and constant pH molecular dynamic simulations (CpHMD) to explore the effects of membrane potential and pH on peptides' adsorption on this lipid membrane.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are part of the innate immune system of many species. AMPs are short sequences rich in charged and non-polar residues. They act on the lipid phase of the plasma membrane without requiring membrane receptors.

View Article and Find Full Text PDF

Polybia-MP1 is an antimicrobial peptide that shows a decreased activity in membranes with cholesterol (CHO). Since it is now accepted that hopanoids act as sterol-surrogates in some sterol-lacking bacteria, we here inquire about the impact of Polybia-MP1 on membranes containing the hopanoid diplopterol (DP) in comparison to membranes with CHO. We found that, despite the properties induced on lipid membranes by DP are similar to those induced by CHO, the effect of Polybia-MP1 on membranes with CHO or DP was significantly different.

View Article and Find Full Text PDF

The synthetic peptides L1A and its acetylated analog (acL1A) display potent Gram-negative bactericidal activities without being hemolytic. We have gathered evidence that the N-terminal acetylation of L1A enhances the lytic activity in anionic vesicles with high capability to insert into and disturb lipid packing of model membranes. Here, the impact of L1A and acL1A was evaluated on a model membrane that mimics the cytoplasmic membrane of Gram-negative bacteria, which is rich in phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), using 3:1 mixture of POPE/DOPG and a variety of techniques.

View Article and Find Full Text PDF

Solitary wasps use their stinging venoms for paralyzing insect or spider prey and feeding them to their larvae. We have surveyed bioactive substances in solitary wasp venoms, and found antimicrobial peptides together with some other bioactive peptides. Eumenine mastoparan-AF (EMP-AF) was the first to be found from the venom of the solitary eumenine wasp , showing antimicrobial, histamine-releasing, and hemolytic activities, and adopting an α-helical secondary structure under appropriate conditions.

View Article and Find Full Text PDF

Peptide sequences containing acidic and basic residues could potentially have their net charges modulated by bulk pH with a possible influence on their lytic activity in lipid vesicles. The present study reports on a biophysical investigation of these modulatory effects on the synthetic mastoparan-like peptide L1A (IDGLKAIWKKVADLLKNT-NH2). At pH 10.

View Article and Find Full Text PDF

L1A (IDGLKAIWKKVADLLKNT-NH2) is a peptide that displays a selective antibacterial activity to Gram-negative bacteria without being hemolytic. Its lytic activity in anionic lipid vesicles was strongly enhanced when its N-terminus was acetylated (ac-L1A). This modification seems to favor the perturbation of the lipid core of the bilayer by the peptide, resulting in higher membrane lysis.

View Article and Find Full Text PDF

The indiscriminate use of conventional antibiotics is leading to an increase in the number of resistant bacterial strains, motivating the search for new compounds to overcome this challenging problem. Antimicrobial peptides, acting only in the lipid phase of membranes without requiring specific membrane receptors as do conventional antibiotics, have shown great potential as possible substituents of these drugs. These peptides are in general rich in basic and hydrophobic residues forming an amphipathic structure when in contact with membranes.

View Article and Find Full Text PDF

Polybia-MP1 or simply MP1 (IDWKKLLDAAKQIL-NH) is a peptide with broad-spectrum bactericidal activity and a strong inhibitory effect against cancer cells. The aim of this work was to evaluate the effect of biophysical properties such as membrane texture and film thickness on MP1 interaction with neutral and anionic lipid membranes. For this purpose, we first explored the peptide's surface behavior.

View Article and Find Full Text PDF

Polybia-MP1 (IDWKKLLDAAKQIL-NH) is a lytic peptide from the Brazilian wasp venom with known anti-cancer properties. Previous evidence indicates that phosphatidylserine (PS) lipids are relevant for the lytic activity of MP1. In agreement with this requirement, phosphatidylserine lipids are translocated to the outer leaflet of cells, and are available for MP1 binding, depending on the presence of liquid-ordered domains.

View Article and Find Full Text PDF

We investigate the effect of the N-terminus modification of the L1A, a synthetic octadecapeptide, on its helical content, affinity and lytic action in model membranes and on its hemolytic and antibacterial activities. L1A and its acetylated analog displayed a selective antibacterial activity to Gram-negative bacteria without being hemolytic. The covalently linked 2-aminobezoic acid to the N-terminus impaired the antibacterial efficacy and increased hemolysis.

View Article and Find Full Text PDF

Polybia-MP1 (IDWKKLLDAAKQIL-NH2), extracted from the Brazilian wasp Polybia paulista, exhibits a broad-spectrum bactericidal activity without being hemolytic and cytotoxic. In the present study, we analyzed the surface properties of the peptide and its interaction with DPPC in Langmuir monolayers. Polybia-MP1 formed stable monolayers, with lateral areas and surface potential values suggesting a mostly α-helical structure oriented near perpendicular to the membrane plane.

View Article and Find Full Text PDF

Polybia-MP1 (MP1) is a bioactive host-defense peptide with known anticancer properties. Its activity is attributed to excess serine (phosphatidylserine (PS)) on the outer leaflet of cancer cells. Recently, higher quantities of phosphatidylethanolamine (PE) were also found at these cells' surface.

View Article and Find Full Text PDF

In this study, a series of mastoparan analogs were engineered based on the strategies of Ala and Lys scanning in relation to the sequences of classical mastoparans. Ten analog mastoparans, presenting from zero to six Lys residues in their sequences were synthesized and assayed for some typical biological activities for this group of peptide: mast cell degranulation, hemolysis, and antibiosis. In relation to mast cell degranulation, the apparent structural requirement to optimize this activity was the existence of one or two Lys residues at positions 8 and/or 9.

View Article and Find Full Text PDF

Polycationic peptides may present their C-termini in either amidated or acidic form; however, the effects of these conformations on the mechanisms of interaction with the membranes in general were not properly investigated up to now. Protonectarina-MP mastoparan with an either amidated or acidic C-terminus was utilized to study their interactions with anionic and zwitterionic vesicles, using measurements of dye leakage and a combination of H/D exchange and mass spectrometry to monitor peptide-membrane interactions. Mast cell degranulation, hemolysis and antibiosis assays were also performed using these peptides, and the results were correlated with the structural properties of the peptides.

View Article and Find Full Text PDF

Polybia-MP1 (IDWKKLLDAAKQIL-NH2), a helical peptide extracted from the venom of a Brazilian wasp, has broad-spectrum antimicrobial activities without being hemolytic or cytotoxic. This peptide has also displayed anticancer activity against cancer cell cultures. Despite its high selectivity, MP1 has an unusual low net charge (Q = +2).

View Article and Find Full Text PDF

Static and time-resolved fluorescence of tryptophan and ortho-aminobenzoic acid was used to investigate the interaction of the synthetic antimicrobial peptide L1A (IDGLKAIWKKVADLLKNT-NH2) with POPC and POPC:POPG. N-acetylated (Ac-L1A) and N-terminus covalently bonded ortho-aminobenzoic acid (Abz-L1A-W8V) were also used. Static fluorescence and quenching by acrylamide showed that the peptides adsorption to the lipid bilayers was accompanied by spectral blue shift and by a decrease in fluorescence quenching, indicating that the peptides moved to a less polar environment probably buried in the lipidic phase of the vesicles.

View Article and Find Full Text PDF

Background: The peptide Paulistine was isolated from the venom of wasp Polybia paulista. This peptide exists under a natural equilibrium between the forms: oxidised - with an intra-molecular disulphide bridge; and reduced - in which the thiol groups of the cysteine residues do not form the disulphide bridge. The biological activities of both forms of the peptide are unknown up to now.

View Article and Find Full Text PDF

This study shows that MP-1, a peptide from the venom of the Polybia paulista wasp, is more toxic to human leukemic T-lymphocytes than to human primary lymphocytes. By using model membranes and electrophysiology measurements to investigate the molecular mechanisms underlying this selective action, the porelike activity of MP-1 was identified with several bilayer compositions. The highest average conductance was found in bilayers formed by phosphatidylcholine or a mixture of phosphatidylcholine and phosphatidylserine (70:30).

View Article and Find Full Text PDF

Antimicrobial peptides of the mastoparans family exert their bactericidal activity by binding to lipid membranes, inducing pores or defects and leaking the internal contents of vesicles and cells. However, this does not seem to be the only mechanism at play, and they might be important in the search for improved peptides with lower undesirable side effects. This work deals with three mastoparans peptides, Polybia-MP-1(MP-1), N2-Polybia-MP-1 (N-MP-1), and Mastoparan X (MPX), which exhibit high sequence homology.

View Article and Find Full Text PDF

Peptides constitute the largest group of Hymenoptera venom toxins; some of them interact with GPCR, being involved with the activation of different types of leukocytes, smooth muscle contraction and neurotoxicity. Most of these toxins vary from dodecapeptides to tetradecapeptides, amidated at their C-terminal amino acid residue. The venoms of social wasps can also contains some tetra-, penta-, hexa- and hepta-peptides, but just a few of them have been structurally and functionally characterized up to now.

View Article and Find Full Text PDF

Some mastoparan peptides extracted from social wasps display antimicrobial activity and some are hemolytic and cytotoxic. Although the cell specificity of these peptides is complex and poorly understood, it is believed that their net charges and their hydrophobicity contribute to modulate their biological activities. We report a study, using fluorescence and circular dichroism spectroscopies, evaluating the influence of these two parameters on the lytic activities of five mastoparans in zwitterionic and anionic phospholipid vesicles.

View Article and Find Full Text PDF

In order to investigate the effect of the different positions of the positive charges generated by the ionization of the side-chain of lysine residues, on the structure-activity relationship of the mastoparans, the peptides Protonectarina-MP (INWKALLDAAKKVL-NH2), Parapolybia-MP (INWKKMAATALKMI-NH2) and Asn-2-Polybia-MP I (INWKKLLDAAKQIL-NH2) and MK-578 (INWLKAKKVAGMIL-NH2) were investigated as models. Thus, the four peptides had their secondary structure studied and were submitted to assays of mast cell degranulation, hemolysis, and antibiosis. The results of the bioassays made clear that those peptides bearing the positive charges positioned at the positions 4/5 and/or from 11 to 13 are the most active ones; meanwhile, the localization of the positive charges in the middle of peptide chain resulted in a poorly active peptide.

View Article and Find Full Text PDF

Hymenoptera venoms are complex mixtures of biochemically and pharmacologically active components such as biogenic amines, peptides and proteins. Polycationic peptides generally constitute the largest group of Hymenoptera venom toxins, and the mastoparans constitute the most abundant and important class of peptides in the venom of social wasps. These toxins are responsible for histamine release from mast cells, serotonin from platelets, and catecholamines and adenylic acids from adrenal chromafin cells.

View Article and Find Full Text PDF

In the last decade, there has been renewed interest in biologically active peptides in fields like allergy, autoimmune diseases and antibiotic therapy. Mast cell degranulating peptides mimic G-protein receptors, showing different activity levels even among homologous peptides. Another important feature is their ability to interact directly with membrane phospholipids, in a fast and concentration-dependent way.

View Article and Find Full Text PDF