Publications by authors named "Joao Pinto da Costa"

Microplastics (MPs) in the aquatic environment pose a serious threat to biota, by being confounded with food. These effects occur in mussels which are filter-feeding organisms. Mussels from the genus Mytilus sp.

View Article and Find Full Text PDF

Human activities have directly impacted the environment, causing significant ecological imbalances. From the different contaminants resulting from human activities, plastics are of major environmental concern. Due to their high use and consequent discharge, plastics tend to accumulate in aquatic environments.

View Article and Find Full Text PDF

Although the impacts of plastic pollution have long been recognized, the presence, pervasiveness, and ecotoxicological consequences of microplastic-i.e., plastic particles < 5 mm-contamination have only been explored over the last decade.

View Article and Find Full Text PDF

As the World slowly emerged from the then-ongoing pandemic, War broke out in Europe with the invasion of Ukraine by Russia. The enduring military conflict in Ukraine has had sweeping consequences at the human, social, economic, and environmental levels, not only for the nations involved but across Europe and globally. Damaged infrastructures, severe disruption of economic activity, and forced migration have led to negative impacts on sustainability.

View Article and Find Full Text PDF
Article Synopsis
  • Cigarette butts, a non-biodegradable waste, are commonly found on urban beaches worldwide and their characteristics were studied for variations in degradation.
  • The research involved collecting and classifying cigarette butts based on a four-level scale of degradation, analyzing their size and weight changes over time.
  • Microscopy and spectroscopy techniques demonstrated significant physical and chemical alterations in cigarette butts, particularly showing decay in cellulose acetate as degradation progressed.
View Article and Find Full Text PDF

The extraction of microplastics from organic-rich freshwater samples is challenging and limited information is available in the literature. This study aims at developing efficient methods for water volume reduction and organic matter removal in freshwater samples, while focusing on the reduction of the economic and environmental costs, maintaining microplastics integrity and avoiding contamination. For the water volume reduction approach, centrifuging freshwater samples (water, sediment, algae, leaves, driftwood, fish tissue) at different speeds (3500, 6000 rpm) and times (5, 10 min) showed that 3500 rpm for 5 min was efficient to settle the mineral and organic material, while preserving the polymers and showing high microplastic recovering rates (93 ± 6%).

View Article and Find Full Text PDF

With over 190 million cases reported and nearly 4.1 million deaths worldwide, COVID19 has been the center of global attention. This pandemic has changed many aspects of daily life and has, perhaps, indelibly changed the way we live and it is quite likely that there will be no full return to normality.

View Article and Find Full Text PDF

Microfluidics is the advanced microtechnology of fluid manipulation in channels with at least one dimension in the range of 1-100 microns. Microfluidic technology offers a growing number of tools for manipulating small volumes of fluid to control chemical, biological, and physical processes relevant to separation, analysis, and detection. Currently, microfluidic devices play an important role in many biological, chemical, physical, biotechnological and engineering applications.

View Article and Find Full Text PDF

Despite the increasing interest in microplastic (MP) research, the accurate prevalence, distribution and fate of these materials in the environment is yet poorly known and, consequently, a focus of debate. Hence, to better ascertain the presence of microplastics in specific environments, samples from 35 random sites distributed across a 4200-meter long section from the area of Sidi Mansour, Sfax-Tunisia, were collected and analyzed. MPs were extracted, digested with potassium hydroxide and dyed with Eosin B, for visual microscopy counting and sorting.

View Article and Find Full Text PDF

Protein post-translational modifications (PTMs) are a key bacterial feature that holds the capability to modulate protein function and responses to environmental cues. Until recently, their role in the regulation of prokaryotic systems has been largely neglected. However, the latest developments in mass spectrometry-based proteomics have allowed an unparalleled identification and quantification of proteins and peptides that undergo PTMs in bacteria, including in species which directly or indirectly affect human health.

View Article and Find Full Text PDF

There have been extensive and comprehensive reviews in the field of metal sulfide precipitation in the context of environmental remediation. However, these works have focused mainly on the removal of metals from aqueous solutions-usually, metal-contaminated effluents-with less emphasis on the precipitation process and on the end-products, frequently centering on metal removal efficiencies. Recently, there has been an increasing interest not only in the possible beneficial effects of these bioremediation strategies for metal-rich effluents but also on the formed precipitates.

View Article and Find Full Text PDF

Answering the question as to why we age is tantamount to answering the question of what is life itself. There are countless theories as to why and how we age, but, until recently, the very definition of aging - senescence - was still uncertain. Here, we summarize the main views of the different models of senescence, with a special emphasis on the biochemical processes that accompany aging.

View Article and Find Full Text PDF

Chemotherapy continues to be the standard treatment for advanced or metastasized cancer. However, commonly used chemotherapeutic agents may induce damage in healthy cells and tissues. Thus, in recent years, there has been an increased focus on the development of new, efficient anticancer drugs exhibiting low toxicity and that are not affected by mechanisms of chemoresistance.

View Article and Find Full Text PDF

The dawn of a new Proteomics era, just over a decade ago, allowed for large-scale protein profiling studies that have been applied in the identification of distinctive molecular cell signatures. Proteomics provides a powerful approach for identifying and studying these multiple molecular markers in a vast array of biological systems, whether focusing on basic biological research, diagnosis, therapeutics, or systems biology. This is a continuously expanding field that relies on the combination of different methodologies and current advances, both technological and analytical, which have led to an explosion of protein signatures and biomarker candidates.

View Article and Find Full Text PDF

This research was undertaken to determine the potential of biologically obtained ZnS-TiO2 nanocomposites to be used as catalysts in the photodegradation of organic pollutants, namely, Safranin-T. The photocatalysts were prepared by modifying the surface of commercial TiO2 particles with naturally produced ZnS, using sulfide species produced by sulfate-reducing bacteria and metal contaminated wastewaters. Comparative studies using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM), prior and after photodegradation, were carried out in order to monitor possible structural and morphological changes on the particles.

View Article and Find Full Text PDF

Antimicrobial peptides are small molecules with activity against bacteria, yeasts, fungi, viruses, bacteria, and even tumor cells that make these molecules attractive as therapeutic agents. Due to the alarming increase of antimicrobial resistance, interest in alternative antimicrobial agents has led to the exploitation of antimicrobial peptides, both synthetic and from natural sources. Thus, many peptide-based drugs are currently commercially available for the treatment of numerous ailments, such as hepatitis C, myeloma, skin infections, and diabetes.

View Article and Find Full Text PDF

New magnetic nanoprobes based on surface-functionalized magnetite particles were synthesized and used to selectively capture metalloproteases from human saliva samples. In addition to their high specific surface area, these nanoparticles have metal ion chelating moieties grafted on their surface by the reaction with the organosilane EDTA-TMS ((N-(trimethoxysilylpropyl)-ethylenediaminetriacetate trisodium salt). The most distinct feature of these particles is their capability to selectively recover metalloproteases even in highly diluted saliva samples.

View Article and Find Full Text PDF

Unlabelled: Antimicrobial peptides (AMPs) and peptidomimetics are among the new generation of antibiotics due to their broad spectrum of activity towards pathogenic agents. Considering the fact that the oral cavity is a relevant entryway for pathogenic microorganisms, it must be armed with several defenses in order to maintain homeostasis. Thus, we aimed at disclosing potential AMPs in saliva from humans, pigs and mice.

View Article and Find Full Text PDF

Formed as an interdisciplinary domain on the basis of Human Genome Project, Proteomics aims at the large-scale study of proteins. The enthusiasm that resulted from obtaining the complete human genetic information has, however, been chastened by the realization that this information contributes little to the comprehension and knowledge of the expressed proteins. In the wake of this realization, the Human Proteome Project (HUPO) was founded, which is a global, collaborative initiative, aiming at the complete characterization of the proteins of all protein-coding genes.

View Article and Find Full Text PDF

Phosphatidylethanolamines are a major class of phospholipids found in cellular membranes. Identification of the alterations in these phospholipids, induced by free radicals, could provide new tools for in vivo diagnosis of oxidative stress. In this study, 1-palmitoyl-2-linoleoyl-phosphatidylethanolamine oxidation products, induced by the hydroxyl radical, were studied using LC-MS and LC-MS/MS.

View Article and Find Full Text PDF