Spectroscopy and machine learning (ML) algorithms have provided significant advances to the modern food industry. Instruments focusing on near-infrared spectroscopy allow obtaining information about seed and grain chemical composition, which can be related to changes caused by field pesticides. We investigated the potential of FT-NIR spectroscopy combined with Linear Discriminant Analysis (LDA) to discriminate chickpea seeds produced using different desiccant herbicides at harvest anticipation.
View Article and Find Full Text PDFOptical sensors combined with machine learning algorithms have led to significant advances in seed science. These advances have facilitated the development of robust approaches, providing decision-making support in the seed industry related to the marketing of seed lots. In this study, a novel approach for seed quality classification is presented.
View Article and Find Full Text PDF