Publications by authors named "Joao Paulo L Daher"

Mutations in the genes encoding LRRK2 and α-synuclein cause autosomal dominant forms of familial Parkinson's disease (PD). Fibrillar forms of α-synuclein are a major component of Lewy bodies, the intracytoplasmic proteinaceous inclusions that are a pathological hallmark of idiopathic and certain familial forms of PD. LRRK2 mutations cause late-onset familial PD with a clinical, neurochemical and, for the most part, neuropathological phenotype that is indistinguishable from idiopathic PD.

View Article and Find Full Text PDF

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed.

View Article and Find Full Text PDF

Background: Missense mutations and multiplications of the alpha-synuclein gene cause autosomal dominant familial Parkinson's disease (PD). alpha-Synuclein protein is also a major component of Lewy bodies, the hallmark pathological inclusions of PD. Therefore, alpha-synuclein plays an important role in the pathogenesis of familial and sporadic PD.

View Article and Find Full Text PDF

Caffeine-induced Ca2+ transients (CICTs) in rabbit nodose ganglion neurons (NGNs) are produced by two distinct mechanisms: release from intracellular stores via ryanodine receptors and Ca2+ influx across the plasma membrane, due to activation of an unknown receptor. In isolated rat NGNs, we used single-cell microfluorimetry to measure changes in intracellular Ca2+ and to test whether TRPV1 receptors underlie the Ca2+ influx pathway. Caffeine (10 mM) evoked CICTs in all NGNs tested (n = 47) averaging 365 +/- 32 nM.

View Article and Find Full Text PDF