Evid Based Complement Alternat Med
May 2015
This study evaluated the effects of the supplementation with aqueous extract of Agaricus blazei Murrill (ABM) on biometric and blood parameters and quantitative morphology of the myenteric plexus and jejunal wall in aging Wistar rats. The animals were euthanized at 7 (C7), 12 (C12 and CA12), and 23 months of age (C23 and CA23). The CA12 and CA23 groups received a daily dose of ABM extract (26 mg/animal) via gavage, beginning at 7 months of age.
View Article and Find Full Text PDFDuring the aging process, the body's systems change structurally and loss of function can occur. Ingesting a smaller amount of food has been considered a plausible proposal for increased longevity with the quality of life. However, the effects of dietary restriction (DR) during aging are still poorly understood, especially for organs of the digestive system.
View Article and Find Full Text PDFFood restriction may slow the aging process by increasing the levels of antioxidant defenses and reducing cell death. We evaluated the effects of food restriction on oxidative and nutritional status, myenteric cell populations, and the colonic muscle layer in aging rats. Wistar rats were distributed into control groups (7, 12, and 23months of age) and subjected to food restriction (50% of normal diet) beginning at 7months of age.
View Article and Find Full Text PDFObjectives: To evaluate the effects of dietary restriction on oxidative status, the HuC/D-neuronal nitric oxide synthase (nNOS) myenteric neuron population, HuC/D-S100 glial cells, and the morphometry of the small intestine in rats at various ages.
Methods: Fifteen Wistar rats were divided into 7-and 12-mo-old control groups and a 12-mo-old experimental group subjected to dietary restrictions (50% of normal ration) for 5 mo. At 7 and 12 mo of age, the animals were anesthetized, and blood was collected to assess the biochemical components and oxidative status.
Alterations in the gastrointestinal neuromuscular function related to age have been demonstrated in human and animal models. This study analyzes the effects of the aging process on the area of the neuronal cell bodies of the myenteric plexus in the antimesenteric and intermediate regions of the ileal circumference of Wistar, 12 month-old in comparison 3 month-old animals. The ileum was removed and whole-mount preparations immunostained by the antibody anti-myosin-V were processed.
View Article and Find Full Text PDFBackground: The neonatal administration of a 4 mg/g dose of monosodium glutamate (MSG) to rodents leads to neuronal death in the hypothalamus arcuate nucleus, which leads in turn to obesity in the adult animal. However, few studies have investigated the effects on the enteric nervous system. This study evaluated the effects of the neonatal administration of MSG on the frequency and morphometry of the myenteric as well as the ileum wall morphometry of adult Wistar male rats.
View Article and Find Full Text PDFThe objective of this work was to analyze the morphoquantitative behavior of neurons of the myenteric plexus, as well as the morphometry of elements of the proximal colon wall of Wistar rats (Rattus norvegicus) fed a normoproteic (22%) and a hypoproteic (8%) diet, and sacrificed at 360 days of age. To perform the neuronal evaluation, we used whole-mount preparations of the proximal colon immunostained with the antibody anti-myosin-V. The neurons were quantified in 80 microscopic fields (16.
View Article and Find Full Text PDF