Syngas fermentation using acetogenic bacteria offers a promising route for sustainable chemical production. However, gas-liquid mass transfer limitations and efficient co-utilization of CO and H pose significant challenges. This study investigated the kinetics of syngas conversion to acetate by Acetobacterium wieringae and Clostridium species in batch conditions under varying initial CO partial pressures (19 - 110 kPa).
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
February 2023
Background: Developing new bioprocesses to produce chemicals and fuels with reduced production costs will greatly facilitate the replacement of fossil-based raw materials. In most fermentation bioprocesses, the feedstock usually represents the highest cost, which becomes the target for cost reduction. Additionally, the biorefinery concept advocates revenue growth from the production of several compounds using the same feedstock.
View Article and Find Full Text PDFGas fermentation is a promising way to convert CO-rich gases to chemicals. We studied the use of synthetic cocultures composed of carboxydotrophic and propionigenic bacteria to convert CO to propionate. So far, isolated carboxydotrophs cannot directly ferment CO to propionate, and therefore, this cocultivation approach was investigated.
View Article and Find Full Text PDFSyngas is a substrate for the anaerobic bioproduction of fuels and valuable chemicals. In this study, anaerobic sludge was used for microbial enrichments with synthetic syngas and acetate as main substrates. The objectives of this study were to identify microbial networks (in enrichment cultures) for the conversion of syngas to added-value products, and to isolate robust, non-fastidious carboxydotrophs.
View Article and Find Full Text PDF