Background: Non-communicable diseases are a leading cause of health loss worldwide, in part due to unhealthy lifestyles. Metabolic-based diseases are rising with an unhealthy body-mass index (BMI) in rural areas as the main risk factor in adults, which may be amplified by wider determinants of health. Changes in rural environments reflect the need of better understanding the factors affecting the self-ability for making balanced decisions.
View Article and Find Full Text PDFWorldwide environmental tragedies of anthropogenic origin causing massive release of metals and other pollutants have been increasing considerably. These pollution outbreaks affect the ecosystems and impact human health. Among those tragedies, recent large-scale environmental disasters in Brazil strongly affected riverside populations, leading to high-risk exposure to methylmercury (MeHg).
View Article and Find Full Text PDFPurinergic Signal
December 2017
Cell signaling mediated by P2X7 receptors (P2X7R) has been suggested to be involved in epileptogenesis, via modulation of intracellular calcium levels, excitotoxicity, activation of inflammatory cascades, and cell death, among other mechanisms. These processes have been described to be involved in pilocarpine-induced status epilepticus (SE) and contribute to hyperexcitability, resulting in spontaneous and recurrent seizures. Here, we aimed to investigate the role of P2X7R in epileptogenesis in vivo using RNA interference (RNAi) to inhibit the expression of this receptor.
View Article and Find Full Text PDFThe cognitive reserve is associated with the capacity of the brain to maintain cognitive performance in spite of being challenged by stressful degenerative insults related to aging. Hippocampal neurogenesis is a life-long process of continuous addition of functional new neurons in the memory processing circuits. Accordingly, adult hippocampal neurogenesis is increasingly seen as a key determinant of cognitive reserve robustness.
View Article and Find Full Text PDFPurpose: Newly designed antiepileptic drugs (AEDs) are being evaluated for their efficacy in preventing seizures and for their toxic profiles. We investigated and compared the toxic effects of two dibenz[b,f]azepine derivatives with anticonvulsant activity, 10,11-dihydro-10-hydroxyimino-5H-dibenz[b,f]azepine-5-carboxamide (BIA2-024) and (S)-(-)-10-acetoxy-10,11-dihydro-5H-dibenz[b,f] azepine-5-carboxamide (BIA2-093), with the structurally related compounds carbamazepine (CBZ) and oxcarbazepine (OXC), both in current use for the treatment of epilepsy.
Methods: Primary rat hippocampal neurons were used to evaluate neuronal morphology and biochemical changes induced by the AEDs used in this study.
Activation of calcium permeable glutamate receptors is likely to be important for neuronal death associated with brain trauma, stroke and neurodegenerative diseases. Cobalt uptake can be used to identify cells containing Ca2+-permeable non-NMDA ionotropic glutamate receptors. However, the relative contribution of AMPA and kainate receptors, and also the role of receptor desensitization on the influx of Co2+, remain to be established.
View Article and Find Full Text PDF