Publications by authors named "Joao Nuno Moreira"

Lipid-based complex injectables are renowned for their effectiveness in delivering drugs, with many approved products. While significant strides have been made in formulating nanosystems for small molecular weight drugs, a pivotal breakthrough emerged with the recognition of lipid nanoparticles as a promising platform for delivering nucleic acids. This finding has paved the way for tackling long-standing challenges in molecular and delivery aspects (e.

View Article and Find Full Text PDF

Brain metastases (BrM) are common malignant lesions in the central nervous system, and pose a significant threat in advanced-stage malignancies due to delayed diagnosis and limited therapeutic options. Their distinct genomic profiles underscore the need for molecular profiling to tailor effective treatments. Recent advances in cancer biology have uncovered molecular drivers underlying tumor initiation, progression, and metastasis.

View Article and Find Full Text PDF

Among the different types of nanosystems that have been investigated for therapeutic use, lipid-based ones are the most explored, as they have advantages over non-lipid nanosystems, especially for improving the transport and efficacy of drugs through different routes of administration, such as ocular, cutaneous, intranasal, and intravenous [...

View Article and Find Full Text PDF

The nasal route has been investigated as a promising alternative for drug delivery to the central nervous system, avoiding passage through the blood-brain barrier and improving bioavailability. In this sense, it is necessary to develop and test the effectiveness of new formulations proposed for the management of neurological disorders. Thereby, the aim of this work was to develop and characterize an ion sensitive in situ hydrogel containing diazepam-loaded nanostructured lipid carriers (DZP-NLC) for nasal delivery in the treatment of epilepsy.

View Article and Find Full Text PDF

The aggressiveness of melanoma and lack of effective therapies incite the discovery of novel strategies. Recently, a new dual acting hybrid molecule (HM), combining a triazene and a ʟ-tyrosine analogue, was synthesized. HM was designed to specifically be activated by tyrosinase, the enzyme involved in melanin biosynthesis and overexpressed in melanoma.

View Article and Find Full Text PDF

Lipid-based nanosystems, including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), cationic lipid nanoparticles, nanoemulsions and liposomes, have been extensively studied to improve drug delivery through different administration routes [...

View Article and Find Full Text PDF

Background: Neuroblastoma (NB) represents the most frequent form of extra-cranial solid tumour of infants, responsible for 15% of childhood cancer deaths. Nucleolin (NCL) prognostic value in NB was investigated.

Methods: NCL protein expression was retrospectively evaluated in tumour samples of NB patients at diagnosis and after chemotherapy.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer that represents 15-20% of breast tumors and is more prevalent in young pre-menopausal women. It is the subtype of breast cancers with the highest metastatic potential and recurrence at the first 5 years after diagnosis. In addition, mortality increases when a complete pathological response is not achieved.

View Article and Find Full Text PDF

In recent years, various drug nano-delivery platforms have emerged to enhance drug effectiveness in cancer treatment. However, their successful translation to clinics have been hampered by unwanted side effects, as well as associated toxicity. Therefore, there is an imperative need for drug delivery vehicles capable of surpassing cellular barriers and also efficiently transfer therapeutic payloads to tumor cells.

View Article and Find Full Text PDF

One of the major assets of anticancer nanomedicine is the ability to co-deliver drug combinations, as it enables targeting of different cellular populations and/or signaling pathways implicated in tumorigenesis and thus tackling tumor heterogeneity. Moreover, drug resistance can be circumvented, for example, upon co-encapsulation and delivery of doxorubicin and sphingolipids, as ceramides. Herein, the impact of short (C6) and long (C18) alkyl chain length ceramides on the nature of drug interaction, within the scope of combination with doxorubicin, was performed in bulk triple-negative breast cancer (TNBC) cells, as well as on the density of putative cancer stem cells and phenotype, including live single-cell tracking.

View Article and Find Full Text PDF

Ligand-mediated targeted liposomes have the potential to increase therapeutic efficacy of anticancer drugs. This work aimed to evaluate the ability of antagonist G, a peptide targeting agent capable of blocking the action of multiple neuropeptides, to selectivity improve targeting and internalization of liposomal formulations (long circulating liposomes, LCL, and stabilized antisense lipid particles containing ionizable amino lipid, SALP) to H69 and H82 small cell lung carcinoma (SCLC) cell lines. Antagonist G-targeted LCL and SALP were prepared by two different methods (either by direct covalent linkage at activated PEG grafted onto the liposomal surface or by post-insertion of DSPE-PEG-antagonist-G-conjugates into pre-formed liposomes).

View Article and Find Full Text PDF

The nasal route has been used for many years for the local treatment of nasal diseases. More recently, this route has been gaining momentum, due to the possibility of targeting the central nervous system (CNS) from the nasal cavity, avoiding the blood-brain barrier (BBB). In this area, the use of lipid nanoparticles, such as nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN), in nasal formulations has shown promising outcomes on a wide array of indications such as brain diseases, including epilepsy, multiple sclerosis, Alzheimer's disease, Parkinson's disease and gliomas.

View Article and Find Full Text PDF

The management of the central nervous system (CNS) disorders is challenging, due to the need of drugs to cross the blood‒brain barrier (BBB) and reach the brain. Among the various strategies that have been studied to circumvent this challenge, the use of the intranasal route to transport drugs from the nose directly to the brain has been showing promising results. In addition, the encapsulation of the drugs in lipid-based nanocarriers, such as solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) or nanoemulsions (NEs), can improve nose-to-brain transport by increasing the bioavailability and site-specific delivery.

View Article and Find Full Text PDF

Multiple studies about tumor biology have revealed the determinant role of the tumor microenvironment in cancer progression, resulting from the dynamic interactions between tumor cells and surrounding stromal cells within the extracellular matrix. This malignant microenvironment highly impacts the efficacy of anticancer nanoparticles by displaying drug resistance mechanisms, as well as intrinsic physical and biochemical barriers, which hamper their intratumoral accumulation and biological activity.Currently, two-dimensional cell cultures are used as the initial screening method in vitro for testing cytotoxic nanocarriers.

View Article and Find Full Text PDF

Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors.

View Article and Find Full Text PDF

Quality-by-design (QbD) approach has been applied to optimize lipid-based nanosystems formulations, including solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and nanoemulsions, besides being increasingly requested by regulatory authorities. Different mathematical models and statistical tests have been used, with similar conclusions regarding the parameters that influence the physical features of the resulting nanosystems. These include, variations in composition (e.

View Article and Find Full Text PDF

Infusion of chimeric antigen receptor (CAR)-genetically modified T cells (CAR-T cells) have led to remarkable clinical responses and cancer remission in patients suffering from relapsed or refractory B-cell malignancies. This is a new form of adoptive T cell therapy (ACT), whereby the artificial CAR enables the redirection of T cells endogenous antitumor activity towards a predefined tumor-associated antigen, leading to the elimination of a specific tumor. The early success in blood cancers has prompted the US Food and Drug Administration (FDA) to approve the first CAR-T cell therapies for the treatment of CD19-positive leukemias and lymphomas in 2017.

View Article and Find Full Text PDF

Recombinant proteins are large and complex molecules, whose therapeutic activity highly depends on their structure. Formulation of biopharmaceuticals aims at stabilizing protein conformation, promoting its efficacy, and preventing safety concerns, such as immunogenicity. Currently, the rational design of formulations is possible due to the availability of several techniques for molecule characterization and an array of both well-known and new excipients.

View Article and Find Full Text PDF

Therapeutic uses of biological medicines are diverse and include active substances from different classes. This chapter provides an overview on the clinical applications of biological medicines containing hormones, blood products, and therapeutic enzymes. Currently, therapeutic hormones have 78 approved medicines, including insulin and analogs, glucagon and analogs, growth hormone, gonadotropins (follicle-stimulating hormone, luteinizing hormone, and human chorionic gonadotropin), thyroid-stimulating hormone, and parathyroid hormone.

View Article and Find Full Text PDF

Cancer is currently the second leading cause of death worldwide and current therapeutic approaches remain ineffective in several cases. Therefore, there is a need to develop more efficacious therapeutic agents, especially for subtypes of cancer lacking targeted therapies. Limited drug penetration into tumors impairs the efficacy of therapies targeting cancer cells.

View Article and Find Full Text PDF

One of the major challenges in Glioblastoma (GBM) therapy relates with the existence of glioma stem-like cells (GSCs), known to be chemo- and radio-resistant. GSCs and non-stem GBM cells have the ability to interchange, emphasizing the importance of identifying common molecular targets among those cell sub-populations. Nucleolin overexpression has been recently associated with breast cancer sub-populations with different stem-like phenotype.

View Article and Find Full Text PDF

Nucleolin arises as a relevant target for cancer therapy, as it is overexpressed at the surface of cancer and angiogenic endothelial cells thus enabling a dual cellular targeting strategy. Immunotherapeutic strategies, albeit of proven therapeutic relevance, have been scarcely explored against this target. Therefore, this work aimed at engineering an anti-nucleolin VHH-based antibody capable of triggering anticancer immune responses.

View Article and Find Full Text PDF

A major challenge in the management of breast cancer disease has been the development of metastases. Finding new molecular targets and the design of targeted therapeutic approaches to improve the overall survival and quality of life of these patients is, therefore, of great importance. Nucleolin, which is overexpressed in cancer cells and tumor-associated blood vessels, have been implicated in various processes supporting tumorigenesis and angiogenesis.

View Article and Find Full Text PDF

Unlabelled: Background Cancer stem cells (CSCs) have been described as a relevant contributor to tumorigenicity, metastasis, tumor recurrence and drug resistance, making this cell population a relevant target in solid tumors.

Methods: This has stimulated the development of different therapeutic strategies often targeting surface markers (CD44, epithelial cell adhesion molecule (EpCAM), aldehyde dehydrogenase (ALDH) and nucleolin) and/or signaling pathways that are aberrantly activated and contribute to CSCs proliferation and survival.

Results: There are a variety of signaling pathways often involved in physiological processes of cell function that aberrantly regulate CSCs, including Notch, Hedgehog, Wnt, PI3K/Akt, JAK/STAT and Ras/ERK signaling pathways.

View Article and Find Full Text PDF

Treatment and management of breast cancer imposes a heavy burden on public health care, and incidence rates continue to increase. Breast cancer is the most common female neoplasia and primary cause of death among women worldwide. The recognition of breast cancer as a complex and heterogeneous disease, comprising different molecular entities, was a landmark in our understanding of this malignancy.

View Article and Find Full Text PDF